Alle Bände

L'Enseignement Mathématique

L'Enseignement Mathématique Volume 49 (2003)
Überschrift Seite
Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Front matter
PDF
Table of Contents
PDF
1
Front matter
PDF
2
Article CARACTÉRISATION GÉOMÉTRIQUE DES SOLUTIONS DE MINIMAX POUR L'ÉQUATION DE HAMILTON-JACOBI
PDF
3
Abstract
PDF
3
Chapter Introduction
PDF
3
Chapter 1. MINIMAX D'UNE FONCTION QUADRATIQUE À L'INFINI
PDF
5
Chapter 1.1 Préliminaires
PDF
5
Chapter 1.2 Points critiques incidents, liés et libres
PDF
8
Chapter 1.3 Le niveau critique de minimax
PDF
10
Chapter 2. La solution de minimax
PDF
13
Chapter 2.1 Rappels de géométrie symplectique
PDF
13
Chapter 2.2 La solution géométrique de (PC)
PDF
17
Chapter 2.3 La solution de minimax
PDF
20
Chapter 3. Caractérisation géométrique de la solution de minimax
PDF
22
Chapter 3.1 Notations
PDF
22
Chapter 3.2 DÉCOMPOSITIONS ADMISSIBLES (D'APRÈS CHEKANOV ET PUSHKAR)
PDF
23
Chapter 3.3 Caractérisation géométrique du minimax
PDF
25
Chapter 3.4 Triangles évanescents
PDF
29
Bibliography
PDF
33
Article LECTURES ON QUASI-INVARIANTS OF COXETER GROUPS AND THE CHEREDNIK ALGEBRA
PDF
35
Chapter Introduction
PDF
35
Chapter 1. Lecture 1
PDF
36
Chapter 1.1 Définition of quasi-invariants
PDF
36
Chapter 1.2 Elementary properties of $Q_m$
PDF
37
Chapter 1.3 The variety $X_m$ and its bijective normalization
PDF
38
Chapter 1.4 FURTHER PROPERTIES OF $X_m$
PDF
39
Chapter 1.5 The Poincaré séries of $Q_m$
PDF
40
Chapter 1.6 The ring of differential operators on $X_m$
PDF
43
Chapter 2. Lecture 2
PDF
43
Chapter 2.1 Hamiltonian mechanics and integrable Systems
PDF
43
Chapter 2.2 The classical Calogero-Moser System
PDF
44
Chapter 2.3 The quantum Calogero-Moser System
PDF
45
Chapter 2.4 The algebra of differential-reflection operators
PDF
46
Chapter 2.5 Dunkl operators and symmetric quantum integrals
PDF
48
Chapter 2.6 Additional integrals for integer valued c
PDF
50
Chapter 2.7 An example
PDF
52
Chapter 3. Lecture 3
PDF
53
Chapter 3.1 Shift operator and construction of the Baker-Akhiezer function
PDF
53
Chapter 3.2 Berest's formula for $L_q$
PDF
54
Chapter 3.3 Differential operators on $X_m$
PDF
57
Chapter 3.4 The Cherednik algebra
PDF
58
Chapter 3.5 The spherical subalgebra
PDF
59
Chapter 3.6 Category O
PDF
60
Chapter 3.7 Generic c
PDF
61
Chapter 3.8 The Levasseur-Stafford theorem and its generalization
PDF
62
Chapter 3.9 The action of the Cherednik algebra to quasi-invariants
PDF
62
Chapter 3.10 Proof of Theorem 1.8
PDF
63
Chapter 3.11 Proof of Theorem 1.15
PDF
63
Bibliography
PDF
64
Article SOME REMARKS ON NONCONNECTED COMPACT LIE GROUPS
PDF
67
Abstract
PDF
67
Chapter 1. Introduction
PDF
67
Chapter 2. Compact Lie groups :a review
PDF
70
Chapter 3. Compact Lie groups and extensions
PDF
72
Chapter 4. Proof of the Main Theorem and examples
PDF
75
Chapter 5. Splitting of the extension ASSOCIATED TO A NONCONNECTED COMPACT LIE GROUP
PDF
80
Bibliography
PDF
83
Article ATIYAH'S $L^2$-INDEX THEOREM
PDF
85
Chapter 1. Introduction
PDF
85
Chapter 2. REVIEW OF THE $L^2$ -INDEX THEOREM
PDF
85
Chapter 3. Hilbert modules
PDF
88
Chapter 4. On K-homology
PDF
89
Chapter 5. Algebraic proof of Atiyah's $L2$-index theorem
PDF
91
Bibliography
PDF
92
Article UNE PREUVE DU THÉORÈME DE LIOUVILLE EN GÉOMÉTRIE CONFORME DANS LE CAS ANALYTIQUE
PDF
95
Chapter 1. Introduction
PDF
95
Chapter 2. Invariance conforme des géodésiques isotropes
PDF
96
Chapter 3. Une application: le théorème de Liouville dans le cas analytique
PDF
98
Bibliography
PDF
100
Article IDEAL SOLUTIONS OF THE TARRY-ESCOTT PROBLEM OF DEGREES FOUR AND FIVE AND RELATED DIOPHANTINE SYSTEMS
PDF
101
Abstract
PDF
101
Chapter 1. Introduction
PDF
101
Chapter 2. Ideal non-symmetric solutions of the Tarry-Escott problem of degree four
PDF
102
Chapter 3. Ideal non-symmetric solutions of the Tarry-Escott problem of degree five
PDF
105
Bibliography
PDF
108
Article ADDITIVE NUMBER THEORY SHEDS EXTRA LIGHT ON THE HOPF-STIEFEL o FUNCTION
PDF
109
Abstract
PDF
109
Chapter 1. Introduction
PDF
109
Chapter 2. Proof of Theorem 4
PDF
112
Chapter 2.1 The lower bound
PDF
112
Chapter 2.2 The upper bound
PDF
113
Chapter 3. From Theorem 3 to Theorem 1
PDF
114
Bibliography
PDF
115
Article NOTE ON THE HOPF-STIEFEL FUNCTION
PDF
117
Chapter Introduction
PDF
117
Chapter 1. Deriving Theorem 1 from Theorem 2
PDF
118
Chapter 2. Proof of Theorem 2
PDF
120
Bibliography
PDF
122
Article TILE HOMOTOPY GROUPS
PDF
123
Abstract
PDF
123
Chapter 1. Introduction
PDF
123
Chapter 2. Tiling and integer programming
PDF
126
Chapter 3. Boundary words
PDF
131
Chapter 4. Tile homotopy groups
PDF
136
Chapter 5. Strategy for working with tile path groups
PDF
140
Chapter 6. Criteria for $\pi(\Tau)$ to be abelian
PDF
148
Appendix 7. Appendix: further examples
PDF
151
Bibliography
PDF
154
Article SYMPLECTIC LOOK AT SURFACES OF REVOLUTION
PDF
157
Chapter 1. Introduction
PDF
157
Chapter 2. Abstract surfaces of revolution
PDF
158
Chapter 3. Metrics of specified curvature
PDF
166
Bibliography
PDF
172
Article QUADRICS, ORTHOGONAL ACTIONS AND INVOLUTIONS IN COMPLEX PROJECTIVE SPACES
PDF
173
Chapter 0. Introduction
PDF
173
Chapter 1. ON THE TOPOLOGY OF A QUADRIC IN $P_C^n$
PDF
177
Chapter 2. ON THE GEOMETRY OF $P_C^n$
PDF
181
Chapter 3. $P_C^2$ AND THE 4-SPHERE $S^4$
PDF
188
Chapter 4. SOME APPLICATIONS AND REMARKS
PDF
195
Bibliography
PDF
201
Rubric COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION)
PDF
205
Chapter DISCUSSION DOCUMENT FOR THE FOURTEENTH ICMI STUDY APPLICATIONS AND MODELLING IN MATHEMATICS EDUCATION
PDF
205
Chapter 1. Rationale for the Study
PDF
205
Chapter 2. Framework for the Study
PDF
207
Chapter 2.1 Concepts and notions
PDF
207
Chapter 2.2 Structure of the topic applications and modelling in mathematics education
PDF
208
Chapter 3. Examples of important issues
PDF
209
Chapter 3.1 Epistemology
PDF
209
Chapter 3.2 Application problems
PDF
210
Chapter 3.3 Modelling abilities and competencies
PDF
210
Chapter 3.4 Beliefs, attitudes, and emotions
PDF
210
Chapter 3.5 Curriculum and goals
PDF
211
Chapter 3.6 Modelling pedagogy
PDF
212
Chapter 3.7 SUSTAINED IMPLEMENTATION
PDF
212
Chapter 3.8 Assessment and evaluation
PDF
213
Chapter 3.9 Technological impacts
PDF
213
Chapter 4. Call for contributions to the Study
PDF
214
Rubric BULLETIN BIBLIOGRAPHIQUE
PDF
1
Chapter Généralités
PDF
1
Chapter Histoire
PDF
5
Chapter Logique et fondements
PDF
6
Chapter Théorie des ensembles
PDF
7
Chapter Analyse combinatoire
PDF
7
Chapter Ordre, treillis
PDF
8
Chapter Théorie des nombres
PDF
8
Chapter Corps et polynômes
PDF
11
Chapter Géométrie algébrique
PDF
12
Chapter Anneaux et algèbres
PDF
12
Chapter Théorie des groupes et généralisations
PDF
13
Chapter Mesure et intégration
PDF
14
Chapter Fonctions d'une variable complexe
PDF
14
Chapter Equations différentielles ordinaires
PDF
15
Chapter Systèmes dynamiques et théorie ergodique
PDF
15
Chapter Analyse de Fourier, analyse harmonique abstraite
PDF
16
Chapter Analyse fonctionnelle
PDF
16
Chapter Théorie des opérateurs
PDF
18
Chapter Calcul des variations
PDF
18
Chapter Géométrie
PDF
19
Chapter Topologie générale
PDF
20
Chapter Topologie algébrique
PDF
21
Chapter Topologie des variétés, analyse globale et analyse des variétés
PDF
21
Chapter Probabilités et processus stochastiques
PDF
23
Chapter Statistique
PDF
24
Chapter Analyse numérique
PDF
25
Chapter Informatique
PDF
25
Chapter Mécanique des solides, élasticité et plasticité
PDF
26
Chapter Optique, électromagnétique
PDF
26
Chapter Economie, recherche opérationnelle, jeux
PDF
26
Chapter Systèmes, contrôle optimal
PDF
27
Back matter
PDF
28
Back matter
PDF
Back matter Endseiten
PDF
Back matter Endseiten
PDF
Back matter Endseiten
PDF
Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE
Front matter Titelseiten
PDF
Table of Contents Inhaltsverzeichnis
PDF
215
Front matter Titelseiten
PDF
216
Article ON THE ENTROPY OF HOLOMORPHIC MAPS
PDF
217
Chapter §1. Notation and definitions
PDF
218
Chapter §2. ESTIMATES OF DENSITY
PDF
219
Chapter §3. KÄHLER MANIFOLDS
PDF
221
Chapter §4. Real algebraic maps
PDF
224
Chapter §5. Quasiconformal maps
PDF
227
Chapter §6. Mean curvature
PDF
229
Appendix Appendix : Examples of holomorphic endomorphisms
PDF
230
Bibliography Bibliographie
PDF
231
Chapter Note des Éditeurs
PDF
232
Article NOTES SUR L'ARTICLE DE M. GROMOV
PDF
232
Bibliography Bibliographie
PDF
234
Article ENDOMORPHISMES DES VARIÉTÉS HOMOGÈNES
PDF
237
Chapter 1. Introduction
PDF
237
Chapter 2. Endomorphismes des variétés complexes compactes
PDF
239
Chapter 2.1 Dimension de Kodaira
PDF
240
Chapter 2.2 Action d'un endomorphisme et ramification
PDF
241
Chapter 2.3 Fibration d'Albanese
PDF
242
Chapter 2.4 Petite dimension
PDF
243
Chapter 2.5 Une question proche
PDF
243
Chapter 3. Variétés homogènes kählériennes
PDF
244
Chapter 3.1 Tores
PDF
244
Chapter 3.2 Variétés de drapeaux
PDF
244
Chapter 3.3 Cas général
PDF
247
Chapter 4. Invariance de la fibration de Tits
PDF
248
Chapter 4.1 La fibration de Tits
PDF
248
Chapter 4.2 Première application
PDF
249
Chapter 5. Quelques exemples
PDF
249
Chapter 6. Existence de facteurs inversibles.
PDF
252
Chapter 6.1 Structure de la fibration de Tits
PDF
253
Chapter 6.2 Un théorème de Jörg Winkelmann
PDF
254
Chapter 6.3 Endomorphismes agissant par automorphismes dans les fibres
PDF
255
Chapter 6.4 Application
PDF
258
Chapter 7. Endomorphismes irréductibles
PDF
258
Bibliography Bibliographie
PDF
261
Article HYPERBOLICITY OF MAPPING-TORUS GROUPS AND SPACES
PDF
263
Abstract Kurzfassung
PDF
263
Chapter Introduction
PDF
263
Chapter 1. An illustration
PDF
268
Chapter 2. Mapping-telescopes and forest-stacks
PDF
271
Chapter 3. Metrics
PDF
272
Chapter 3.1 Horizontal and vertical metrics
PDF
272
Chapter 3.2 Telescopic metric
PDF
275
Chapter 4. Main theorem
PDF
276
Chapter 5. PRELIMINARY WORK
PDF
278
Chapter 5.1 About dilatation in cancellations
PDF
280
Chapter 5.2 Straight telescopic paths
PDF
282
Chapter 6. About straight quasi geodesics
PDF
283
Chapter 7. Substitution of quasi geodesics
PDF
285
Chapter 8. Approximation of straight quasi geodesics in fine position
PDF
288
Chapter 9. PUTTING PATHS IN FINE POSITION
PDF
289
Chapter 10. Straight quasi geodesic bigons are thin
PDF
291
Chapter 11. Geodesic triangles are thin
PDF
293
Chapter 12. Back to mapping-telescopes
PDF
296
Chapter 12.1 Statement of the theorem
PDF
296
Chapter 12.2 Proof of Theorem 12.4
PDF
298
Chapter 13. About mapping-torus groups
PDF
298
Chapter 13.1 Relationships with mapping-telescopes
PDF
299
Chapter 13.2 Free group endomorphisms and forest-maps
PDF
301
Chapter 13.3 Proof of Theorem 13.2
PDF
303
Bibliography Bibliographie
PDF
304
Article THE BASIC GERBE OVER A COMPACT SIMPLE LIE GROUP
PDF
307
Abstract Kurzfassung
PDF
307
Chapter 1. Introduction
PDF
307
Chapter 2. Gerbes with connections
PDF
309
Chapter 2.1 Chatterjee-Hitchin gerbes
PDF
309
Chapter 2.2 Bundle gerbes
PDF
310
Chapter 2.3 Simplicial gerbes
PDF
311
Chapter 2.4 Equivariant bundle gerbes
PDF
315
Chapter 3. Gerbes from principal bundles
PDF
316
Chapter 4. Gluing data
PDF
319
Chapter 5. The basic gerbe over a compact simple Lie group
PDF
323
Chapter 5.1 Notation
PDF
323
Chapter 5.2 The basic 3-form on G
PDF
324
Chapter 5.3 The special unitary group
PDF
326
Chapter 6. Pre-quantization of conjugacy classes
PDF
329
Appendix Appendix A. Proof of Lemma 4.4
PDF
331
Bibliography Bibliographie
PDF
332
Article ANALYSE DE FOURIER DES FRACTIONS CONTINUES À QUOTIENTS RESTREINTS
PDF
335
Abstract Kurzfassung
PDF
335
Chapter 1. Introduction
PDF
335
Chapter 2. Les ensembles F(A)
PDF
337
Chapter 3. Dimension de Hausdorff
PDF
340
Chapter 4. Une mesure spéciale
PDF
341
Chapter 5. Intégrales oscillantes
PDF
344
Chapter 6. Estimation de la transformée de Fourier
PDF
345
Chapter 7. Une question de Montgomery
PDF
352
Chapter 8. COMMENTAIRES ET QUESTIONS
PDF
354
Bibliography Bibliographie
PDF
355
Article ON THE CLASSIFICATION OF RATIONAL KNOTS
PDF
357
Abstract Kurzfassung
PDF
357
Chapter 1. Introduction
PDF
357
Chapter 2. Rational tangles and their invariant fractions
PDF
362
Chapter 3. The classification of unoriented rational knots
PDF
373
Chapter 3.1 The cuts
PDF
375
Chapter 3.2 The flypes
PDF
384
Chapter 4. Rational knots and their mirror images
PDF
392
Chapter 5. On connectivity
PDF
393
Chapter 6. The oriented case
PDF
395
Chapter 7. Strongly invertible links
PDF
405
Bibliography Bibliographie
PDF
407
Rubric BULLETIN BIBLIOGRAPHIQUE
PDF
29
Chapter Généralités
PDF
29
Chapter Histoire
PDF
35
Chapter Logique et fondements
PDF
36
Chapter Analyse combinatoire
PDF
36
Chapter Théorie des nombres
PDF
37
Chapter Corps et polynômes
PDF
38
Chapter Géométrie algébrique
PDF
38
Chapter Anneaux et algèbres
PDF
40
Chapter K-théorie
PDF
41
Chapter Théorie des groupes et généralisations
PDF
41
Chapter Groupes topologiques ; groupes et algèbres de Lie
PDF
42
Chapter Fonctions d'une variable complexe
PDF
42
Chapter Fonctions de plusieurs variables complexes
PDF
43
Chapter Équations différentielles ordinaires
PDF
44
Chapter Équations aux dérivées partielles
PDF
44
Chapter Systèmes dynamiques et théorie ergodique
PDF
44
Chapter Approximations et développements en série
PDF
45
Chapter Analyse de Fourier, analyse harmonique abstraite
PDF
46
Chapter Analyse fonctionnelle
PDF
46
Chapter Théorie des opérateurs
PDF
47
Chapter Calcul des variations et contrôle optimal
PDF
47
Chapter Géométrie
PDF
48
Chapter Géométrie différentielle
PDF
48
Chapter Topologie algébrique
PDF
49
Chapter Topologie des variétés, analyse globale et analyse des variétés
PDF
50
Chapter Probabilités et processus stochastiques
PDF
51
Chapter Statistique
PDF
51
Chapter Analyse numérique
PDF
52
Chapter Informatique
PDF
53
Chapter Mécanique des fluides, acoustique
PDF
53
Chapter Biologie et sciences du comportement
PDF
54
Chapter Information, communication, circuits
PDF
54
Back matter Endseiten
PDF
Front matter Titelseiten
PDF
Index Register
PDF
Back matter Endseiten
PDF
Back matter Endseiten
PDF
Back matter Endseiten
PDF