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Wz -invariant, we deduce that p(x)-p(sx) 0, so that in this case p(x) -p(sx)
also is divisible by as(x)2ms+l.

To conclude, notice that p(z) 0. Indeed, for a reflection s, as vanishes

exactly on the fixed points of s9 so that Y\s^sz^zas(z)2ms+l y^ 0. Also for all

w eWz f(wz) =f(z) y^ 0. On the other hand, it is clear that p(y) =0.

Example 1.5. Take W Z/2. As we have already seen, Qm has a

basis given by the monomials {xZl \ i > 0} U {x2l+l \ i > m}. From this we

deduce that setting z x2 and y x2m+i
^ zy _ ^m+iy _ q[jq 5

where K is the plane curve with a cusp at the origin, given by the equation

y2 z2m+1. The map it: C -ï K is given by tt(t) (t2m+\t2), which is

clearly bijective.

I 1.4 Further properties of Xm

J Let us get to some deeper properties of quasi-invariants. Let X be an
J irreducible affine variety over C and A C[X]. Recall that, by the Noether

I Normalization Lemma, there exist f\,... G C[X] which are algebraically
j independent over C and such that C[X] is a finite module over the polynomial
j ring C[/i,... ,/„]. This means that we have a finite morphism of X onto an

] affine space.

j Definition 1.6. A (and X) is said to be Cohen-Macaulay if there exist
j f\.... Jn as above, with the property that C[X] is a locally free module over
I C[/i,... Jn\, (Notice that by the Quillen-Suslin theorem, this is equivalent to
j saying that A is a free module.)

Remark. If A is Cohen-Macaulay, then for any /],... Jn which are

algebraically independent over C and such that A is a finite module over the

polynomial ring C[/i, we have that A is a locally free C\f\,... Jn] -
j module, see [Eis], Corollary 18.17.

.j Theorem 1.7 ([EG2], [BEG], conjectured in [FV]). Qm is Cohen-
Macaulay.

j j Notice that, using Chevalley's result that C[l)]w is a polynomial ring, it
I will suffice, in order to prove Theorem 1.7, to prove:

jj Theorem 1.8 ([EG2, BEG], conjectured in [FV]). Qm is a free C[l)]w-
I module.
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We show how one can prove this Theorem in 3.10. This proof follows
[BEG] (the original proof of [EG2] is shorter but somewhat less conceptual).
The main idea of the proof is to show that the C[f)]w -module Qm can
be extended to a module over a bigger (noncommutative) algebra, namely
the spherical subalgebra of the rational Cherednik algebra. Furthermore, this

module belongs to an appropriate category of representations of this algebra,
called category O. On the other hand, it can be shown that any module over
the spherical subalgebra that belongs to this category is free when restricted
to the commutative algebra C[l)]w.

1.5 The Poincaré series of Qm

Consider now the Poincaré series

hQ,„(t) =a Y dim Qm[r]t'
r>0

where Qm[r] denotes the graded component of Qm of degree r. For every
irreducible representation r eW, define

Xr(t)Y dim Horniv(r, C[ï)][r])f
r>0

Consider the element in the group ring Z[W]

Mm

The W-invariance of m implies that iim lies in the center of Z[W]. Hence

it is clear that fim acts as a scalar, £m(r), on r. Let dT be the degree of r.

Lemma 1.9. The scalar £m(r) is an integer.

Proof. Z[W] and hence also its center, is a finite Z-module. This clearly
implies that £m(r) is an algebraic integer. Thus to prove that £m(r) is an

integer, it suffices to see that £m(r) is a rational number. Let dT^s be the

dimension of the space of s-invariants in r. Taking traces we get

^T^mC7") — ^ 2nis{dT dT)S),

which gives the rationality of £m(r).
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