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by d5., such a metric on I". We will call mapping-telescope standard metric
any mapping-telescope dj.-metric on C(Gy).

LEMMA 13.5. The mapping-torus group G, of an injective free group
endomorphism acts cocompactly, properly discontinuously and isometrically
on the Cayley complex C(G) equipped with any mapping-telescope standard
metric.

Proof. 'We consider the usual action by left translations of the group on
its Cayley graph. This action is extended in a natural way to a free action on
the Cayley complex C(G,). Let f denote the map giving the strata for the
structure of forest-stack of C(G,), see Lemma 13.3. For a mapping-telescope
metric, all the strata f~'(r) and f~!(r+1) are isometric. And for a mapping-
telescope standard metric all the strata f~!(n), n € Z, are equipped with the
standard metric. This readily implies that the above action is isometric. [

13.2 FREE GROUP ENDOMORPHISMS AND FOREST-MAPS

The main point of Lemma 13.6 below is the so-called ‘bounded-cancellation
lemma’ of [7] for free group automorphisms, and of [10] for the injective free
group endomorphisms.

LEMMA 13.6. Let a be an injective free group endomorphism. Let F and
¢ be the forest and the forest-map on F given by Lemma 13.3. Then @b is a
weakly bi-Lipschitz forest-map of F equipped with the standard metric d.

Proof. If w is any element in F, = (xi,...,x,), and |.|. denotes the
word-metric on F,, then |a(w)| p, S (maxi—y ., |o(x;)] F. )| w] F, - By definition

of the standard metric, and setting py = max;=; - o lax)] F o the map zp

satisfies dF(w(x),w(y)) < pody(x,y) for any pair of vertices x, y. If x, y are
not vertices, then they are joined in their stratum by a horizontal geodesic
which is the concatenation of a path between two vertices, with two proper
subsets of edges. By construction and simpliciality of 2; , proper subsets of
edges are dilated by a bounded factor when applying QZ , SO that the conclusion
follows for the upper bound.

If w is any element in F,, then

o W), < ( max [a™' ), )l

Setting 4 = max;—;__, |of1(xl-)[F” we get |a(w)|, > i[wlF Therefore

d%(zZ(x),@Z(y)) > M—adj;(x, y) for any pair of vertices x,y. The inequality
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for all points x,y does not follow as easily as for the upper bound,
since the map zz might identify points, and this could make the distance
decrease sharply. However, assume the existence of a constant Ky such that
Qp(x) w(y) = dp(x,y) < Kp. Any geodesic in F is the concatenation
of a geodesic between two vertices with two proper subsets of edges
of F. Thus the inequality d;(w(x) zp(y)) 11 dy(x,y) — 2Ko follows in
a straightforward way from the preceding assertions. Injective free group
endomorphisms satisfy the so-called ‘bounded-cancellation lemma’ (see [10],
and [7] for the particular case of automorphisms), i.e. there exists A, > 0
such that |a(wiwz)|p > |a(wi)|p + |a(wa)|, — Ay for any wi,wy in F,
with |wiwa|, = |wi|p +|wz|p . This 1nequa11ty gives a constant Ky = Ay +2
as required above, i.e. such that, if w(x) 1/;()1) then ds w(x,y) < Kp. Setting
1 = max(ug, n1) and K = 2Ky, we get Lemma 13.6. [

LEMMA 13.7. With the assumptions and notation of Lemma 13.6,

1) If « is hyperbolic then the forest-map is hyperbolic.

2) If « is hyperbolic and its image Im(ov) is malnormal, then the forest-
map is strongly hyperbolic. |

Proof. (1) is easy to check. Let us prove (2). The notation used is that
introduced in Section 13 when defining the forest F and the map ibv . If the
map is not strongly hyperbolic, there exists an infinite sequence of pairs of
connected components (7;,T!) such that 7; and 7] are identified under {bv
along a geodesic g; and the length of ¢; tends to 4+oco as i — +oo. Thus
there exists an infinite number of elements (i, u.) € F, —Im(c) X F,, — Im(c)
such that some geodesic word a;w;b; (resp. ajw;bl) connects two vertices
associated to elements in u; Im(a) (resp. in u, Im(cr)) where the length of the
w;’s tends to +oo as i — +00.

Observe that in particular qwb; € Im(a), aw;p; € Im(x), whereas
aw;b, ¢ Im(a) and djw;b; ¢ Im(c) because they carry an element of
u; Im(c) (resp. u.Im(c)) to an element of «] Im(c) (resp. of u; Im(c)). The
lengths of the a;, b;, al, b} can be assumed to be at most the maximum
of the lengths of the images under « of the generators of F,, which is
finite. Since there are only a finite number of pairs of elements of bounded
lengths, a same pair a, b; (resp. aj, bj) appears an infinite number of
times when listing the sequence of words aw;b; (resp. ajw;b}). The same
finiteness argument then gives two words w; C wy; with wy = ww; such
that aqyw;ib; € Im(a), aqqw;ib; € Im(e), awib; ¢ Im(a) and ajw;b; ¢ Im(a),
j= 1,2,
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1 -1 1.1
Thus alwlbIb wy - 1a,l € Im(e), alwlblb’, wy lw=ld';" € Im(a),
_ —1, =1y _
ajwbiby~ lwl wld'; ! ¢ Im(a). Now (alw la’l ) alw a, (a w a’, =
a,w’la’ 7 € Im(), whereas qqw™'d’; ' ¢ Im(e) and qw~la; l'e Im(a). We
thus get a contradiction to the malnormahty of Im() in F,. This completes

the proof. [

13.3 PROOF OF THEOREM 13.2

From Lemmas 13.6 and 13.7, the Cayley complex C(G,) is the mapping-
telescope of a strongly hyperbolic forest-map, equipped with the standard
metric. A Cayley complex is connected. Thus, from Theorem 12.4, C(G,) 18
a Gromov-hyperbolic metric space for any mapping-telescope standard metric.
From Lemma 13.5 the group G, acts cocompactly, properly discontinuously
‘ and isometrically on C(G,) equipped with a mapping-telescope standard
i metric. A classical lemma of geometric group theory (usually attributed to
; Effremovich, Svarc, Milnor — see [19] or [17] for instance), applied to quasi
| geodesic metric spaces, tells us that G, and C(G,) are quasi-isometric SO
that G, is a hyperbolic group. [

| REMARK 13.8. Another way of stating our main theorem about ‘forest-
stacks’, using the language of trees of spaces, goes roughly as follows: “An
| oriented R-tree of R-trees with the gluing-maps satisfying the conditions
| of hyperbolicity and strong hyperbolicity with uniform constants is Gromov-
hyperbolic.” Here ‘oriented R-tree’ means an R-tree 7 equipped with an
orientation going from the domain to the image of each attaching-map, and
a surjective continuous map f: 7 — R respecting this orientation. As a
corollary of our theorem, and in order to illustrate it, we chose to concentrate
on mapping-telescopes. We could as well consider spaces similar to mapping-
telescopes but where we allow the attaching-maps not to be the same at each
q step. Our only requirement is to have uniform constants of quasi-isometry,
| hyperbolicity and so on. Also, with respect to groups, a corollary could have
been stated dealing with HNN-extensions rather than just semi-direct products.

Another result which easily follows from our work could be more or less
stated as follows. “Let T be a tree of spaces X;, i=0,1,....Let ¢: T — T
be a map of T such that the mapping-telescope of each X; under 1 is
| Gromov-hyperbolic. If 1) induces a hyperbolic map on the tree resulting of
| the collapsing of each X; to a point, then the mapping-telescope of the tree
of spaces T under % is Gromov-hyperbolic.” We leave the precise statement
of such corollaries to the reader. Together with [14] where a new proof of the
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