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From this we deduce

THEOREM 1.14 ([EG2, BEG, FeV], conjectured in [FV]). The ring Opn
of m-quasi-invariants is Gorenstein.

Proof. By Stanley’s theorem (see [Eis]), a positively graded Cohen-
Macaulay domain A is Gorenstein iff its Poincaré series is a rational function
h(t) satisfying the equation h(t~') = (—1)"f'h(f), where [ is an integer and n
is the dimension of the spectrum of A. Thus the result follows immediately
from Proposition 1.13. [

1.6 THE RING OF DIFFERENTIAL OPERATORS ON X,,

Finally, let us introduce the ring D(X,,) of differential operators on X,,,
that is the ring of differential operators with coefficients in C() mapping Q,,
to Q,,. It 1s clear that this definition coincides with Grothendieck’s well-known
definition ([Bj]).

THEOREM 1.15 ([BEG]). D(X,,) is a simple algebra.

REMARK 1.16. a) The ring of differential operators on a smooth affine
algebraic variety 1s always simple (see [Bj], Chapter 3).

b) By a result of M. van den Bergh [VdB], for a non-smooth variety, the
simplicity of the ring of differential operators implies the Cohen-Macaulay
property of this variety.

2. LECTURE 2

We will now see how the ring O, appears in the theory of completely
integrable systems.

2.1 HAMILTONIAN MECHANICS AND INTEGRABLE SYSTEMS

Recall the basic setup of Hamiltonian mechanics [Ar]. Consider a mechan-
ical system with configuration space X (a smooth manifold). Then the phase
space of this system is 7"X, the cotangent bundle on X. The space T*X
is naturally a symplectic manifold, and in particular we have an operation
of Poisson bracket on functions on 7*X. A point of 7*X is a pair (x,p),
where x € X is the position and p € TX is the momentum. Such pairs are
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called states of the system. The dynamics of the system x = x(z), p = p(t)
depends on the Hamiltonian, or energy function, E(x,p) on T*X. Given E
and the initial state x(0), p(0), one can recover the dynamics x = x(?),
p = p(t) from Hamilton’s differential equations %ﬂ = {f,E}. If X is
locally identified with R" by choosing coordinates xi,...,x,, then T%X is
locally identified with R?>" with coordinates xi,...,%,,p1,...,Pn. In these
coordinates, Hamilton’s equations may be written in their standard form

oo
_8pl7 pl"_ 8}(,‘!'

A function I(x,p) is called an integral of motion for our system if
{I,E} = 0. Integrals of motion are useful, since for any such integral
the function I(x(#), p(¢)) is constant, which allows one to reduce the number
of variables by 2. Thus, if we are given n functionally independent integrals
of motion I,...,I, with {[;,[;} = 0 for all 1 < [,k < n, then all 2n
variables x;,p; can be excluded, and the system can be completely solved by
quadratures. Such a situation is called complete (or Liouville) integrability.

X

2.2 THE CLASSICAL CALOGERO-MOSER SYSTEM

Quasi-invariants are related to many-particle systems. Consider a system
of n particles on the real line R. A potential is an even function

Ux)=U(—x), xeR.

Two particles at points a, b have energy of interaction U(a — b). The total
energy of our system of particles is

noo2
E = Z% +3 U - x).
i=1 i<j
Here, x; are the coordinates of the particles, p; their momenta. The dynamics
of the particles x; = x;(t), p; = pi(¢) is governed by the Hamilton equations
with energy function E.

This is a system of nonlinear differential equations, which in general can
be difficult to solve explicitly. However, for special potentials this system
might be completely integrable. For instance, we will see that this is the case
for the Calogero-Moser potential,

U = =,
X

~ being a constant.
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The Calogero-Moser system has a generalization to arbitrary Coxeter
groups. Namely, consider a finite group W generated by reflections acting on
the space b, and keep the notation of the previous section. Fix a W -invariant
nondegenerate scalar product (—,—) on h. It determines a scalar product
on h*. Define the “energy function”

(p p) Z 7s(a‘saas)

R xebh, peh”

E(x,p) =
on T*fh = h x h*, where v: £ — C is a W-invariant function. Notice that
although oy is defined up to a non zero constant, by homogeneity, E is
independent of the choice of «,. We will call the system defined by E the
Calogero-Moser system for W.

If W is the symmetric group S,,, h = C”, then X is the set of transpositions
sij» 1 <J, and we can take oy = e; — ¢j, Then we clearly obtain the usual
Calogero-Moser system.

Below we will see that the Calogero-Moser system for W is completely
integrable.

2.3 THE QUANTUM CALOGERO-MOSER SYSTEM

Let us now discuss quantization of the Calogero-Moser system. We start
by quantizing the energy E by formally making the substitution

8

where 7 is a parameter (Planck’s constant). This yields the Schrodinger
operator

E\ — ——A Z ’Ys(amas) ,
SEZ
where A denotes the Laplacian.
In particular, in the case of W =S, we have

2. . . .
where A = > ; g_xl?' Setting G, = %%, we will from now on consider the
operator

og(x)

called the Calogero-Moser operator.
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We want to study the stationary Schrodinger equation :
(3) Hy=M, AeC.

As in the classical case, it is difficult to say anything explicit about
solutions of this equation for a general Schrodinger operator H, but for the
Calogero-Moser operator the situation is much better.

DEFINITION 2.1. A quantum integral of H is a differential operator M
such that
[M,H] =0.

We are going to show that there are many quantum integrals of H, namely
that there are n commuting algebraically independent quantum integrals
M,,...,M, of H. By definition, this means that the quantum Calogero-Moser
system is completely integrable.

Once we have found M;,...,M,, observe that for fixed constants
Wi, - -, Uy, the space of solutions of the system
My =
Mn¢ = /~Ln¢

1s clearly stable under H. We will see that this space is in fact finite
dimensional. Therefore, the operators M; allow one to reduce the problem of
solving the partial differential equation Hy = A to that of solving a system
of ordinary linear differential equations. This phenomenon is called quantum
complete integrability.

2.4 THE ALGEBRA OF DIFFERENTIAL-REFLECTION OPERATORS .

We are now going to explain how to find quantum integrals for H, using
the Dunkl-Cherednik method.

First let us fix some notation. Given a smooth affine variety X, we will
denote by D(X) the ring of differential operators on X. We are going
to consider the case in which X is the open set U in h which is the
complement of the divisor of the equation d(x) := Hsez as(x). Clearly

D) = DM)[1/6x)].

LEMMA 2.2. An element of D(U) is completely determined by its action
on C[U1" = C[U/W].
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Proof. Recall that the quotient map 7: U — U/W is finite and unramified.

This implies that
D(U) = ClU] ®cy/w) DWU/W).

From this we obtain that if P € D(U) is such that Pf = 0 for all f € C[U/W],
then P=0. [

We also have the operators on C[U] given by the action of W. We will
denote by A the algebra of operators on U generated by D(U) and W, and
call it the algebra of differential-reflection operators. The action of W on U
induces an action on D(U), so that the subalgebra D(U) C A is preserved
by conjugation by elements of W. We have:

PROPOSITION 2.3. A = DU) x W, ie. every element in A € A can be
uniquely written as a linear combination

A:Zwa

weWw
with Py, € D(U).

Proof. The fact that every element in A can be expressed as a linear
combination ), . Pyw is clear. To show that such an expression is unique,
assume ) - Pyw = 0. Take f € C[U] such that “f # “f for all w # u
in W, and multiply the operator »_ P,w on the right by the operator of
multiplication by the function f*, i > 0. Then we get

ZPwo(wf)iw: Zwaofizo.

wew weW
Applying both sides of this equation to a function g € C[U/W] we have
Y Pyo™f)g=0.
weW

Thus by Lemma 2.2, ZwGWPw oWl =0 for all i. Therefore, by Vander-

monde’s determinant formula, P, o[, #u(“’f —"“f) =0 and hence P, = 0,
for all w € W, as desired. [

Take A € A and write
A= Z P,w.
wew

We set m(A) = ), cw Pw € D(U). Notice that if f is a W-invariant function,
then clearly A(f) = m(A)(f) and that, by what we have seen in Lemma 2.2,
m(A) is completely determined by its action on invariant functions.
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In general, m is not a homomorphism. However :

PROPOSITION 2.4. Let AY C A denote the subalgebra of elements
invariant under conjugation by W. Then the restriction of m to AV is
an algebra homomorphism.

Proof. If A € AV, then clearly m(A) is W-invariant. Now if we
take A,B € A" and f a W-invariant function we have that B(f) is also
W -invariant. So |

m(AB)(f) = (AB)(f) = AB(f)) = A(m(B)(f)) = m(A)(m(B)(f)) -

Thus m(AB) and m(A)m(B) coincide on W-invariant functions and hence
coincide. [

2.5 DUNKL OPERATORS AND SYMMETRIC QUANTUM INTEGRALS

In this subsection we will construct quantum integrals of the Calogero-
Moser operator. This construction is due to Heckman [He] and is based on
the Dunkl operators, introduced in [Dul].

Fix a W-invariant function c: £ — C such that 8y = c4(¢cy + 1) for each
s € X. Set d¢ := [[;cy as(x)* and define

L=68.(x)Hb(x)" 1.
Then an easy computation shows that
ZCS
L=A- O 4

2o
where, for a vector y € §j, the symbol 0y denotes, as usual, the partial
derivative in the y direction (notice that using the scalar product we are
viewing «y as a vector in f orthogonal to the hyperplane fixed by s).

From now on we will work with L instead of H and study the eigenvalue
problem

4) Lip = .

It is clear that 1) is a solution of this equation if and only if J.(x)"!%) is a
solution of (3).

Since for any s € X and f € C[h] we have that f(sx) — f(x) is divisible
by a,(x), the operator

1
as(x)(s_ He A

maps C[h] to itself.
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DEFINITION 2.5. Given y € b, we define the Dunkl operator Dy on C[h]
by

D=0+ Y e s -,
sEX s

We have the following very important theorem.

THEOREM 2.6 ([Du]). Let y,z € h. Then
[DyaDz] =0.

Proof. See [Du], [Op]. [

PROPOSITION 2.7 (Heckman [Hel). Let {yi,...,yn} be an orthonormal
basis of Y. Then we have

m(i D;)=L
i=1

Proof. Observe that m(3> ), D2) =7, m(D3), so we need to compute
m(D}) for y € h. We have m(D}) = m(Dym(D,)) = m(Dy0y). A simple
computation shows that

85 2 S
D3, =%+ 3 2D - 22280, 0.
SEZ S S S

Thus

2
mD?) = 0 23 ¢ 22Y)

(s, ag)ars(x)

We get

(0, 05 0g(X)

n n 2
1\ O, Y
OBIED SLAE) BRI N
i=1 i seX
since Z?zl(asyyi)z - (aﬁ CVS)' D

We are now ready to give the construction of quantum integrals of L.
Consider the symmetric algebra S = C[yy,...,y,] which we can identify,
using the fact that the Dunkl operators commute, with the polynomial
ring C[D,,,...,D,] C A. The restriction of m to Sh" is an algebra
homomorphism into the ring D(U) (and in fact into D(U/W)). Since Sh" is
itself a polynomial ring Clgqi,...,q,], with q1,...,q, of degree di,...,d,,
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d; being the degrees of basic W-invariants, we obtain a polynomial ring of
commuting differential operators in D(U). Given g € Clqy, ..., q,] we will
denote by L, the corresponding differential operator. We may assume that
g1 = > ., ¥7 so that L = L, . Thus for every q € Clgi,...,qal, L, is a
quantum integral of the quantum Calogero-Moser system. In particular, the
operators L, ,...,L, are n algebraically independent pairwise commuting
quantum integrals.

Now the eigenvalue problem (4) may be replaced by
L,y = At

for p € Clgi,...,9,], where the assignment p — X, is an algebra
homomorphism Cig,...,q,] — C.

In other words, we may say that since Clgi,...,q,] = C[h*/W] =
C[h/W], for every point k € h/W, we have the eigenvalue problem

S) Ly = p(k)p .

PROPOSITION 2.8. Near a generic point xo € by, the system Ly = p(k)y
has a space of solutions of dimension |W|.

Proof. The proposition follows easily from the fact that the symbols of
L, are g;(0), and that Cly,...,y,] is a free module over Clg,...,g,] of
rank |[W|. [

2.6 ADDITIONAL INTEGRALS FOR INTEGER VALUED c

If ¢, ¢ Z, the analysis of the solutions of the equations L,y = p(k)i) is
rather difficult (see [HO]). However, in the case c: ¥ — Z, the system can be
simplified. Let us consider this case. First remark that, since §; = ¢(c;+1), by
changing c; to —1 — ¢, if necessary, we may assume that ¢ is non-negative.
So we will assume that ¢ takes non-negative integral values and we will
denote it by m.

System (5) can be further simplified, if we can find a differential
operator M (not a polynomial of L, ,...,L, ) such that [M,L,] = 0 for
all p € Clq,...,q,]. Then the operator M will act on the space of solutions
of (5), hopefully with distinct eigenvalues. So if p is such an eigenvalue, the
system

{Lp¢=p<k>¢
My = pi




2 TR L S g s
otongein D D e T B

il w S i

K
i
i
3
S
i
]
i
7
vt
S

QUASI-INVARIANTS OF COXETER GROUPS 51

will have a one dimensional space of solutions and we can find the unique
up to scaling solution ¢ using Euler’s formula.

Such an M exists if and only if ¢ = m has integer values. Namely, we will
see that one can extend the homomorphism Clgi, ..., ¢,] — D(U) mapping
q — L, to the ring of m-quasi-invariants Oy, .

We start by remarking that under some natural homogeneity assumptions,
if such an extension exists, it is unique.

PROPOSITION 2.9. 1) Assume that g € Clyy,...,y.] is a homogeneous

polynomial of degree d. If there exists a differential operator M, with
coefficients in C(h), of the form

M, = q(0y,,...,0,,) + Lo.t.

such that [M,,L] =0, whose homogeneity degree is —d, then M, is unique.

2) Let Clqi,...,q.0 € B C Clyy,...,ya] be a graded ring. Assume that
we have a linear map M: B — D(U) such that, if g € B is homogeneous of
degree d, then [M,,L] =0, M, has homogeneity degree —d, and

M, = q(0y,,...,0y,) + Lo.t.
Then M is a ring homomorphism and M, = L, for all g € Clqy,...,qx].

Proof. 1) If there exist two different operators M, and Mé] with these
properties, take M, — M(’]. This operator has degree of homogeneity —d, but
order smaller than d. Therefore, its symbol S(x,y) is not a polynomial. On
the other hand, since the symbol of L is Y y7, we get that [L, M, —M,] =0
implies {>_y?,S(x,y)} = 0. Write S in the form K(x,y)/H(x) with K is a
polynomial, and H(x) a homogeneous polynomial of positive degree ¢ (we
assume that K(x,y) and H(x) have no common irreducible factors). Then

B ) > yiKe (G, H @) — Y yiH (0K (x, )
0'— {Zyl,S(X,y)}‘z H(X)2 P

Since Y :_, x;Hy(x) = tH(x), we have >  yiH,(0)K(x,y) # 0. So H(x)
must divide this polynomial and, by our assumptions, this implies that it must
divide the polynomial » ., y;H,(x) whose degree in x is ¢ — 1. This is a
contradiction.

2) Let g,p € B be two homogeneous elements. Then M,M, and M, both
satisfy the same homogeneity assumptions. Hence they are equal by 1).

Finally if ¢ € Clqy,...,g.], both M, and L, satisfy the same homogeneity
assumptions. Hence they are equal by 1). [
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The required extension to the ring of m-quasi-invariants is then provided
by the following

THEOREM 2.10 ([CV1, CV2]). Let ¢ = m: X — Zy. The following
two conditions are equivalent for a homogeneous polynomial g € C[h*] of
degree d.

1) There exists a differential operator
L, =4q(0y,,...,0,,)+ lo.t

of homogeneity degree —d, such that [L,, L] = 0.
2) q is an m-quasi-invariant homogeneous of degree d.

Using this, we can extend system (5) to the system

(6) Lyp =p(k)y, p€Qm, keSpecQy=Xn.

(Recall that, as a set, X,, = h.) Near a generic point xy € b, system (6)
has a one dimensional space of solutions, thus there exists a unique up to
scaling solution (k, x), which can be expressed in elementary functions. This
solution is called the Baker-Akhiezer function, and has the form

Wk, x) = P(k,x) ™

with P(k,x) a polynomial of the form §(x)6(k) + Lo.t. and e*® denotes the
exponential function computed in the scalar product (k,x). Furthermore, it
can be shown that 1 (k,x) = ¥(x, k) (see [CV1, CV2, FV]).

These results motivate the following terminology. The variety X,, is called
the spectral variety of the Calogero-Moser system for the multiplicity function
m, and Q,, is called the spectral ring of this system.

2.7 AN EXAMPLE

EXAMPLE 2.11. Let W=12Z/2, h = C, m = 1. As we have seen, Oy
has a basis given by the monomials {x*} U {x**3}, i > 0. Let us set for
such a monomial, L, = L,, and 0 = %. Then we have

2 3 3
Li=1, L,=8-20, Ls3=0"-=0"+50.
X X X

As for the others, Ly, = Lg, Ltz = LéL3. (Note that L; is not defined). The
system (6) in this case 1s

2p// _ %w/ - kzw’
X

1 3 3 '
W =2y W =Ry,
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The solution can easily be computed by differentiating the first equation and
then subtracting the second, thus obtaining the new system
w// . % ¢/ — k2 ?p

X
1

77b/l o (__ 4 kzx)wl — —k3x¢ ]
X

Taking the difference, we get the first order equation

k2

V=

whose solution (up to constants) is given by ¢ = (kx — 1) et

In fact, one can easily calculate ,, for a general m.

PROPOSITION 2.12.  t),(k,x) = (x0 —2m~+ 1)(x0 —2m —1) - - - (x0 — 1) €**.

Proof. We could use the direct method of Example 2.11, but it is more
convenient to proceed differently. Namely, we have

(0% — %’”axxa —2m+1)= @0 —2m+ 1)(8* — @8)

as it 1s easy to verify directly. So using induction on m starting with m =0,
we get

(@ — 20y, ) = (00— 2m 1 1) D 1) = Rl ),

and 1,,(k,x) is our solution.  []

3. LECTURE 3

3.1 SHIFT OPERATOR AND CONSTRUCTION OF THE BAKER-AKHIEZER FUNCTION

In Lecture 2, we have introduced the Baker-Akhiezer function 1 (k,x) for
the operator
2¢
L=A- >
2 o

The way to construct ) (k,x) is via the Opdam shift operator. Given a function
m: 2 — Z,, Opdam showed in [Opl] that there exists a unique W -invariant
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