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ON THE CLASSIFICATION OF RATIONAL KNOTS 393

the equation gx = —1 mod p and both ¢ and g are between 1 and p — 1.
Since this equation has a unique solution in this range, we conclude that
g = ¢q'. It follows at once that the continued fraction sequence for p/q is

symmetric.
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FIGURE 29

An achiral rational link

It is then easy to see that the corresponding rational knot or link K = N(T)
is equivalent to its mirror image. One rotates K by 180° in the plane and
swings an arc, as Figure 29 illustrates. The point is that the crossings of the
second row of the tangle T, that are seemingly crossings of opposite type
than the crossings of the upper row, become after the turn crossings of the
upper row, and so the types of crossings are switched. This completes the
proof. [

5. ON CONNECTIVITY

We shall now introduce the notion of connectivity and we shall relate it
to the fraction of unoriented rational tangles. We shall say that an unoriented
rational tangle has connectivity type [0] if the NW end arc is connected to
the NE end arc and the SW end arc is connected to the SE end arc. These are
the same connections as in the tangle [0]. Similarly, we say that the tangle
has connectivity type [oo] or [1] if the end arc connections are the same as
in the tangles [oo] and [41] (or equivalently [—1]) respectively. The basic
connectivity patterns of rational tangles are exemplified by the tangles [0],
[cc] and [+41]. We can represent them iconically by

[0] = =
[c0] = ><
[1] = x




394 L.H. KAUFFMAN AND S. LAMBROPOULOU

For connectivity we are only concerned with the connection patterns of the four
end arcs. Thus [#] has connectivity x whenever n is odd, and connectivity
= whenever n is even.

Note that connectivity type [0] yields two-component rational links, whilst
type [1] or [oco] yields one-component rational links. Also, adding a bottom
twist to a rational tangle of connectivity type [0] will not change the
connectivity type of the tangle, while adding a bottom twist to a rational
tangle of connectivity type [oo] will switch the connectivity type to [1] and
vice versa.

We need to keep an accounting of the connectivity of rational tangles in
relation to the parity of the numerators and denominators of their fractions.
We adopt the following notation: e stands for even and o for odd. The
parity of a fraction p/q is defined to be the ratio of the parities (e or
o) of its numerator and denominator p and ¢. Thus the fraction 2/3 is
of parity e/o. The tangle [0] has fraction O = 0/1, thus parity e/o.
The tangle [oo] has formal fraction oo = 1/0, thus parity o/e. The
tangle [+1] has fraction 1 = 1/1, thus parity o/o, and the tangle [—1]
has fraction —1 = —1/1, thus parity o/o. We then have the following
result.

THEOREM 6. A rational tangle T has connectivity type < if and only if
its fraction has parity e/o. T has connectivity type >< if and only if its
fraction has parity o/e. Finally, T has connectivity type x if and only if its
fraction has parity o/o.

Proof. Since F([0]) = 0/1, F([£1]) = £1/1 and F([oco]) = 1/0, the
theorem is true for these elementary tangles. It remains to show by induction
that it is true for any rational tangle 7. Note how connectivity, type behaves
under the addition and product of tangles:

X
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The symbol & stands for the value of a loop formed. Now any rational
tangle can be built from [0] or [co] by successive addition or multiplication
with [£1]. Thus, from the point of view of connectivity, it suffices to show
that [71+[£1] and [T]=*[=£1] satisfy the theorem whenever [T] satisfies the
theorem. This is checked by comparing the connectivity identities above with
the parity of the fractions. For example, in the case

X +x == we have o/o+o0/o=¢e/o

exactly in accordance with the connectivity identity. The other cases correspond
as well, and this proves the theorem by induction. [

COROLLARY 1. For a rational tangle T the link N(T) has two components
if and only if T has fraction F(T) of parity e/o.

Proof. By the Theorem we have F(T) has parity e/o if and only if T has
connectivity type <. It follows at once that N(7) has two components. []

Another useful fact is that the components of a rational link are individually
unknotted embeddings in three dimensional space. To see this, observe that
upon removing one strand of a rational tangle, the other strand is an unknotted
arc.

6. THE ORIENTED CASE

Oriented rational knots and links are numerator (and denominator) closures
of oriented rational tangles. Rational tangles are oriented by choosing an
orientation for each strand of the tangle. Two oriented rational tangles are
isotopic if they are isotopic as unoriented tangles via an isotopy that carries the
orientation of one tangle to the orientation of the other. Since the end arcs of a
tangle are fixed during a tangle isotopy, this means that isotopic tangles must




	5. On connectivity

