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LECTURES ON QUASI-INVARIANTS OF COXETER GROUPS
AND THE CHEREDNIK ALGEBRA

by Pavel ETINGOF and Elisabetta STRICKLAND *)

INTRODUCTION

This paper arose from a series of three lectures given by the first author
at the Universita di Roma “Tor Vergata” in January 2002, when the second
author extended and improved her notes of these lectures. It contains an
elementary introduction for non-specialists to the theory of quasi-invariants
(but no original results).

Our main object of study is the variety X,, of quasi-invariants for a finite
Coxeter group. This very interesting singular algebraic variety arose in work
of O. Chalykh and A. Veselov about 10 years ago, as the spectral variety of
the quantum Calogero-Moser system. We will see that despite being singular,
this variety has very nice properties (Cohen-Macaulay, Gorenstein, simplicity
of the ring of differential operators, explicitly given Hilbert series). One
should remark that although the definition of X,, is completely elementary, it
is helpful, in order to understand the geometry of X,,, to use representation
theory of the rational degeneration of Cherednik’s double affine Hecke algebra,
and the theory of integrable systems. Thus, the study of X,, leads us to a
junction of three subjects — integrable systems, representation theory, and
algebraic geometry. The content of the paper is as follows. In Lecture 1
we define the ring of quasi-invariants for a Coxeter group, and discuss its
elementary properties (with proofs), as well as deeper properties, such as
Cohen-Macaulay, the Gorenstein property, and the Hilbert series (whose partial

*) The work of the first author was partially supported by his NSF grant DMS-9988796 and
was done in part for the Clay Mathematics Institute. The series of lectures in “Tor Vergata” was
financed by the MIUR “Progetto Azioni di Gruppi” of which the second author is a member.
The authors are also grateful to Corrado De Concini for useful discussions.
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proofs are postponed until Lecture 3). In Lecture 2, we explain the origin of
the ring of quasi-invariants in the theory of integrable systems, and introduce
some tools from integrable systems, such as the Baker-Akhieser function.
Finally, in Lecture 3, we develop the theory of the rational Cherednik algebra,
the representation-theoretic techniques due to Opdam and Rouquier, and finish
the proofs of the geometric statements from Chapter 1.

1. LECTURE 1

1.1 DEFINITION OF QUASI-INVARIANTS

In this lecture we will define the ring of quasi-invariants @, and discuss
its main properties.

We will work over the field C of complex numbers. Let W be a finite
Coxeter group, i.e. a finite group generated by reflections. Let us denote by
b its reflection representation. A typical example is the Weyl group of a
semisimple Lie algebra acting on a Cartan subalgebra h. In the case the Lie
algebra is sl(n), we have that W is the symmetric group S, on n letters and
b is the space of diagonal traceless n x n matrices.

Let ¥ C W denote the set of reflections. Clearly, W acts on X by
conjugation. Let m: X — Z, be a function on X taking non negative integer
values, which is W-invariant. The number of orbits of W on X is generally
very small. For example, if W is the Weyl group of a simple Lie algebra of
ADE typé, then W acts transitively on X, so m is a constant function.

For each reflection s € X, choose «; € h* — {0} so that, for x € b,
os(sx) = —a(x) (this means that the hyperplane given by the equation oz = 0
is the reflection hyperplane for s).

DEFINITION 1.1 ([CV1, CV2]). A polynomial g € C[h] is said to be
m-quasi-invariant with respect to W if, for any s € X, the polynomial
g(x) — g(sx) is divisible by a(x)*™*1.

We will denote by Q,, the space of m-quasi-invariant polynomials with
respect to W.

Notice that every element of C[h] is a O-quasi-invariant, and that every
W -invariant is an m-quasi-invariant for any m. Indeed if g € C[H1¥, then
we have g(x) — g(sx) = 0 for all s € X, and O is divisible by all powers of
a,(x). Thus in a way, C[H]" can be viewed as the set of oo-quasi-invariants.
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EXAMPLE 1.2. The group W = Z/2 acts on h = C by s(v) = —v. In
this case m is a non negative integer and X = {s}. So this definition says
that ¢ is in O, iff g(x)—q(—x) is divisible by x*"'. It is very easy to write
a basis of 0,,. It is given by the polynomials {x* | i > 0} U {x**' | i > m}.

1.2 ELEMENTARY PROPERTIES OF Q,,

Some elementary properties of O, are collected in the following propo-
sition.

PROPOSITION 1.3 (see [FV] and references therein).

1) CHIY € Qn C Clhl, Qo = CIHl, QOnw C Qw if m =z m,
ﬂm Qm — C[h]W .

2) O, is a graded subalgebra of Clh].

3) The fraction field of Q,, is equal to C(h).

4 Q,, is a finite C[h]" -module and a finitely generated algebra. C[h] is a
finite Q,,-module.

Proof. 1) is immediate and has already been mentioned in 1.1.
2) Clearly Q,, is closed under addition. Let p,q € O,,. Let s € X. Then

p(0)q(x) — p(sx)q(sx) = (p(x) — p(sx))q(x) + p(sx)(g(x) — g(sx)) .
Since both p(x) — p(sx) and g(x) — g(sx) are divisible by a?™*!, we deduce

s

that p(x)g(x) — p(sx)q(sx) is also divisible by o™+, proving the claim.
3) Consider the polynomial

Samr1(®) = | T s+
SEX
This polynomial is uniquely defined up to scaling. One has dyy,+1(sx) =
—my1(x) for each s € X, hence dyut1 € O Take f(x) € C[h]. We claim
that f(x)dpms1(x) € Q.. As a matter of fact,

F)02my1(x) — f(sX)02mp-1(5%) = (f(x) + f(5x))02m41(x),

and by its definition 8, 1(x) is divisible by oy (x)*™T! for all s € X. This
implies 3).

4) By Hilbert’s theorem on the finiteness of invariants, we get that C[H]"V
is a finitely generated algebra over C and C[h] is a finite C[h]" -module and
hence a finite Q,,-module, proving the second part of 4).

Now Q,, C C[h] is a submodule of the finite module C[h] over the

Noetherian ring C[h]". Hence it is finite. This immediately implies that Q,,
is a finitely generated algebra over C. [




38 P. ETINGOF AND E. STRICKLAND

REMARK. In fact, since W is a finite Coxeter group, a celebrated result
of Chevalley says that the algebra C[h]" is not only a finitely generated
C-algebra but actually a free (=polynomial) algebra. Namely, it is of the
form Clqy,...,q,], where the g; are homogeneous polynomials of some
degrees d;. Furthermore, if we denote by H the subspace of C[h] of harmonic
polynomials, i.e. of polynomials killed by W -invariant differential operators
with constant coefficients without constant term, then the multiplication
map

Ch1" ® H — C[h]

is an isomorphism of C[h]" - and of W-modules. In particular, C[h] is a free
C[5]"-module of rank |W]|.

1.3 THE VARIETY X,, AND ITS BUECTIVE NORMALIZATION

Using Proposition 1.3, we can define the irreducible affine variety
Xn = Spec(Qy,). The inclusion Q,, C C[h] induces a morphism

m:bh— X,

which again by Proposition 1.3 is birational and surjective. (Notice that in
particular this implies that X,, is singular for all m # 0.)
In fact, not only is 7 birational, but a stronger result 1s true.

PROPOSITION 1.4 (Berest, see [BEG]). 7 is a bijection.

Proof. By the above remarks, we only have to show that 7 is injective.
In order to achieve this, we need to prove that quasi-invariants separate points
of b, i.e. that if z,y € h and z # y, then there exists p € @, such that
p(z) # p(y). This is obtained in the following way. Let W, C W be the
stabilizer of z and choose f € C[h] such that f(z) # 0, f(y) = 0. Set

pwy= [] et ][ faw.
SEZX ,57F7 weW,

We claim that p(x) € Q,,. Indeed, let s € ¥ and assume that s(z) # z.
We have by definition p(x) = a,(x)*™"1p(x), with p(x) a polynomial. So

p(x) — p(sx) = a;(0)*™ M p(x) — a(s2)™™ T p(sx) = ()™ T (Bx) + plsx)) -

If on the other hand, sz = z, i.e. s € W,, then s preserves the set
W\ W,, and hence preserves HséZﬂ(W\Wz) a,(x)?™t1 (as it acts by —1 on the

products [T oy os(0)*™+! and [[icpqw, as@)?™*). Since [,y fwx) is
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W, -invariant, we deduce that p(x) —p(sx) = 0, so that in this case p(x) — p(sx)
also is divisible by o(x)*™ T,

To conclude, notice that p(z) # 0. Indeed, for a reflection s, a; vanishes
exactly on the fixed points of s, so that HSEZ,SZ 22 ay(z)?mt £ 0, Also for all
w e W, flwz) =f(z) #0. On the other hand, it is clear that p(y) =0. [

EXAMPLE 1.5. Take W = Z/2. As we have already seen, O, has a
basis given by the monomials {x* | i > 0} U {x**! | i > m}. From this we
deduce that setting z = x* and y = x*"t!, 0,, = Cly,zl/(* —2%"*!) = C[K],
where K is the plane curve with a cusp at the origin, given by the equation
y2 = 72"t1 The map 7: C — K is given by n(t) = (#*"',#*), which is
clearly bijective.

1.4 FURTHER PROPERTIES OF X,

Let us get to some deeper properties of quasi-invariants. Let X be an
irreducible affine variety over C and A = C[X]. Recall that, by the Noether
Normalization Lemma, there exist fi,...,f, € C[X] which are algebraically
independent over C and such that C[X] is a finite module over the polynomial

ring C[fi,...,f,]. This means that we have a finite morphism of X onto an
affine space.

DEFINITION 1.6. A (and X) is said to be Cohen-Macaulay if there exist
fi,-..,fn as above, with the property that C[X] is a locally free module over

Clfi,...,fx]. (Notice that by the Quillen-Suslin theorem, this is equivalent to
saying that A is a free module.)

REMARK. If A is Cohen-Macaulay, then for any fi,...,f, which are
algebraically independent over C and such that A is a finite module over the

polynomial ring C[fj,...,f,], we have that A is a locally free C[fi,...,f.]-
module, see [Fis], Corollary 18.17.

THEOREM 1.7 ([EG2], [BEG], conjectured in [FV]). Q,, is Cohen-
Macaulay.

Notice that, using Chevalley’s result that C[h]" is a polynomial ring, it
will suffice, in order to prove Theorem 1.7, to prove:

THEOREM 1.8 ([EG2, BEG], conjectured in [FV]). Q,, is a free C[h]V -
module.
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We show how one can prove this Theorem in 3.10. This proof follows
[BEG] (the original proof of [EG2] is shorter but somewhat less conceptual).
The main idea of the proof is to show that the C[H]" -module Q,, can
be extended to a module over a bigger (noncommutative) algebra, namely
the spherical subalgebra of the rational Cherednik algebra. Furthermore, this
module belongs to an appropriate category of representations of this algebra,
called category . On the other hand, it can be shown that any module over
the spherical subalgebra that belongs to this category is free when restricted
to the commutative algebra C[h]" .

1.5 THE POINCARE SERIES OF Q,,

Consider now the Poincaré series

ho, () =) dim Q[

r>0

where Q,,[r] denotes the graded component of Q,, of degree r. For every
irreducible representation 7 € W, define g

X&) =) _ dim Homyy (r, C[H1[])?" .
r>0

Consider the element in the group ring Z[W]

Hm = st(l —5).

SEX

The W-invariance of m implies that u,, lies in the center of Z[W]. Hence
it is clear that u, acts as a scalar, &,(7), on 7. Let d. be the degree of 7.

LEMMA 1.9. The scalar &,(7) is an integer.

Proof. Z[W] and hence also its center, 1S a finite Z-module. This clearly
implies that &,(r) is an algebraic integer. Thus to prove that &,(7) is an
integer, it suffices to see that ¢,(7) is a rational number. Let d.; be the
dimension of the space of s-invariants in 7. Taking traces we get

d-bn() =) 2m(d, —dy ),

SEX

which gives the rationality of &,(7). L]
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THEOREM 1.10. One has

(1) ho, () =Y d1"Dx.(0).

TEW\

REMARK. This theorem was proved in [FeV] modulo Theorem 1.7
(conjectured in [FV]) using the so-called Matsuo-Cherednik correspondence
(see [FeV] for details). Thus, Theorem 1.10 follows from [FeV] and [EG2].
Another proof of this theorem is given in [BEG]; this is the proof we will
discuss below (in Lecture 3).

EXAMPLE 1.11. If m =0, since Qy = Cl[h], the theorem says that

1
hoy(t) = T = 2 (@)
TeWw

Indeed, as a W-module one has

Clhl = &,7 @ Homw (7, C[h]) .

EXAMPLE 1.12. If W = Z/2, then W = {+, -}, where + (respec-
tively —) denotes the trivial (respectively the sign) representation. One has

Clx] = C[x*] & C[**]x,

where C[x*] = C[x]" and C[x*]x is the isotypic component of the sign
representation. Thus

r

1
[) —m — () = ——
X+() 1_t27 X() 1 _2°

tm = m(l —s). Thus &,(+) =0, £,(—) = 2m. We deduce that

TR e SRR e s A RE R Y 0l 0 TR DS, SMUME

as we already know.

Recall now that as a graded W-module C[h] is isomorphic to C[HIY @ H,
H being the space of harmonic polynomials. We deduce that the T -1sotypic
component in C[h] is isomorphic to C[h]" @ H., .
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Set K.(t) = Zrzo dim Homyy (7, H[r])¢". This is a polynomial, called the
Kostka polynomial relative to 7. We deduce that

B K. (1)
x- () = (=

(2)

Also, if 7" =7®c¢, ¢ being the sign representation, one has

K. () =K. D,

Set now
P, = Z d, "MK (7).
TEﬁ/\
We have
PROPOSITION 1.13 ([FeV]).
P(1)
ho (1) = .
=0 L)

Furthermore P, (1) = ts»@+Ep, =1,

Proof. Substituting the expression (2) for x-(¢) in (1.10) and using the
definition of P,(f), we get

K- (1) Py (1)

ho, () = Y  d ™ = ,
Qm( ) %V\ H7:1(1 _ l‘di) H?:l(l — td,')

as desired.
Now notice that

En(T) + En(™) = 2my = &(e).
SEX
Using this we get
tgm(g)‘f‘lzlpm(t—]) — Z dTt&m(e)_é-m("-)t'leT(t_1)
TEW\

= Z dT’ZSm(TI)KT’(t) — Pm(t) )
rew

as desired. ]
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From this we deduce

THEOREM 1.14 ([EG2, BEG, FeV], conjectured in [FV]). The ring Opn
of m-quasi-invariants is Gorenstein.

Proof. By Stanley’s theorem (see [Eis]), a positively graded Cohen-
Macaulay domain A is Gorenstein iff its Poincaré series is a rational function
h(t) satisfying the equation h(t~') = (—1)"f'h(f), where [ is an integer and n
is the dimension of the spectrum of A. Thus the result follows immediately
from Proposition 1.13. [

1.6 THE RING OF DIFFERENTIAL OPERATORS ON X,,

Finally, let us introduce the ring D(X,,) of differential operators on X,,,
that is the ring of differential operators with coefficients in C() mapping Q,,
to Q,,. It 1s clear that this definition coincides with Grothendieck’s well-known
definition ([Bj]).

THEOREM 1.15 ([BEG]). D(X,,) is a simple algebra.

REMARK 1.16. a) The ring of differential operators on a smooth affine
algebraic variety 1s always simple (see [Bj], Chapter 3).

b) By a result of M. van den Bergh [VdB], for a non-smooth variety, the
simplicity of the ring of differential operators implies the Cohen-Macaulay
property of this variety.

2. LECTURE 2

We will now see how the ring O, appears in the theory of completely
integrable systems.

2.1 HAMILTONIAN MECHANICS AND INTEGRABLE SYSTEMS

Recall the basic setup of Hamiltonian mechanics [Ar]. Consider a mechan-
ical system with configuration space X (a smooth manifold). Then the phase
space of this system is 7"X, the cotangent bundle on X. The space T*X
is naturally a symplectic manifold, and in particular we have an operation
of Poisson bracket on functions on 7*X. A point of 7*X is a pair (x,p),
where x € X is the position and p € TX is the momentum. Such pairs are




44 P. ETINGOF AND E. STRICKLAND

called states of the system. The dynamics of the system x = x(z), p = p(t)
depends on the Hamiltonian, or energy function, E(x,p) on T*X. Given E
and the initial state x(0), p(0), one can recover the dynamics x = x(?),
p = p(t) from Hamilton’s differential equations %ﬂ = {f,E}. If X is
locally identified with R" by choosing coordinates xi,...,x,, then T%X is
locally identified with R?>" with coordinates xi,...,%,,p1,...,Pn. In these
coordinates, Hamilton’s equations may be written in their standard form

oo
_8pl7 pl"_ 8}(,‘!'

A function I(x,p) is called an integral of motion for our system if
{I,E} = 0. Integrals of motion are useful, since for any such integral
the function I(x(#), p(¢)) is constant, which allows one to reduce the number
of variables by 2. Thus, if we are given n functionally independent integrals
of motion I,...,I, with {[;,[;} = 0 for all 1 < [,k < n, then all 2n
variables x;,p; can be excluded, and the system can be completely solved by
quadratures. Such a situation is called complete (or Liouville) integrability.

X

2.2 THE CLASSICAL CALOGERO-MOSER SYSTEM

Quasi-invariants are related to many-particle systems. Consider a system
of n particles on the real line R. A potential is an even function

Ux)=U(—x), xeR.

Two particles at points a, b have energy of interaction U(a — b). The total
energy of our system of particles is

noo2
E = Z% +3 U - x).
i=1 i<j
Here, x; are the coordinates of the particles, p; their momenta. The dynamics
of the particles x; = x;(t), p; = pi(¢) is governed by the Hamilton equations
with energy function E.

This is a system of nonlinear differential equations, which in general can
be difficult to solve explicitly. However, for special potentials this system
might be completely integrable. For instance, we will see that this is the case
for the Calogero-Moser potential,

U = =,
X

~ being a constant.
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The Calogero-Moser system has a generalization to arbitrary Coxeter
groups. Namely, consider a finite group W generated by reflections acting on
the space b, and keep the notation of the previous section. Fix a W -invariant
nondegenerate scalar product (—,—) on h. It determines a scalar product
on h*. Define the “energy function”

(p p) Z 7s(a‘saas)

R xebh, peh”

E(x,p) =
on T*fh = h x h*, where v: £ — C is a W-invariant function. Notice that
although oy is defined up to a non zero constant, by homogeneity, E is
independent of the choice of «,. We will call the system defined by E the
Calogero-Moser system for W.

If W is the symmetric group S,,, h = C”, then X is the set of transpositions
sij» 1 <J, and we can take oy = e; — ¢j, Then we clearly obtain the usual
Calogero-Moser system.

Below we will see that the Calogero-Moser system for W is completely
integrable.

2.3 THE QUANTUM CALOGERO-MOSER SYSTEM

Let us now discuss quantization of the Calogero-Moser system. We start
by quantizing the energy E by formally making the substitution

8

where 7 is a parameter (Planck’s constant). This yields the Schrodinger
operator

E\ — ——A Z ’Ys(amas) ,
SEZ
where A denotes the Laplacian.
In particular, in the case of W =S, we have

2. . . .
where A = > ; g_xl?' Setting G, = %%, we will from now on consider the
operator

og(x)

called the Calogero-Moser operator.
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We want to study the stationary Schrodinger equation :
(3) Hy=M, AeC.

As in the classical case, it is difficult to say anything explicit about
solutions of this equation for a general Schrodinger operator H, but for the
Calogero-Moser operator the situation is much better.

DEFINITION 2.1. A quantum integral of H is a differential operator M
such that
[M,H] =0.

We are going to show that there are many quantum integrals of H, namely
that there are n commuting algebraically independent quantum integrals
M,,...,M, of H. By definition, this means that the quantum Calogero-Moser
system is completely integrable.

Once we have found M;,...,M,, observe that for fixed constants
Wi, - -, Uy, the space of solutions of the system
My =
Mn¢ = /~Ln¢

1s clearly stable under H. We will see that this space is in fact finite
dimensional. Therefore, the operators M; allow one to reduce the problem of
solving the partial differential equation Hy = A to that of solving a system
of ordinary linear differential equations. This phenomenon is called quantum
complete integrability.

2.4 THE ALGEBRA OF DIFFERENTIAL-REFLECTION OPERATORS .

We are now going to explain how to find quantum integrals for H, using
the Dunkl-Cherednik method.

First let us fix some notation. Given a smooth affine variety X, we will
denote by D(X) the ring of differential operators on X. We are going
to consider the case in which X is the open set U in h which is the
complement of the divisor of the equation d(x) := Hsez as(x). Clearly

D) = DM)[1/6x)].

LEMMA 2.2. An element of D(U) is completely determined by its action
on C[U1" = C[U/W].
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Proof. Recall that the quotient map 7: U — U/W is finite and unramified.

This implies that
D(U) = ClU] ®cy/w) DWU/W).

From this we obtain that if P € D(U) is such that Pf = 0 for all f € C[U/W],
then P=0. [

We also have the operators on C[U] given by the action of W. We will
denote by A the algebra of operators on U generated by D(U) and W, and
call it the algebra of differential-reflection operators. The action of W on U
induces an action on D(U), so that the subalgebra D(U) C A is preserved
by conjugation by elements of W. We have:

PROPOSITION 2.3. A = DU) x W, ie. every element in A € A can be
uniquely written as a linear combination

A:Zwa

weWw
with Py, € D(U).

Proof. The fact that every element in A can be expressed as a linear
combination ), . Pyw is clear. To show that such an expression is unique,
assume ) - Pyw = 0. Take f € C[U] such that “f # “f for all w # u
in W, and multiply the operator »_ P,w on the right by the operator of
multiplication by the function f*, i > 0. Then we get

ZPwo(wf)iw: Zwaofizo.

wew weW
Applying both sides of this equation to a function g € C[U/W] we have
Y Pyo™f)g=0.
weW

Thus by Lemma 2.2, ZwGWPw oWl =0 for all i. Therefore, by Vander-

monde’s determinant formula, P, o[, #u(“’f —"“f) =0 and hence P, = 0,
for all w € W, as desired. [

Take A € A and write
A= Z P,w.
wew

We set m(A) = ), cw Pw € D(U). Notice that if f is a W-invariant function,
then clearly A(f) = m(A)(f) and that, by what we have seen in Lemma 2.2,
m(A) is completely determined by its action on invariant functions.
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In general, m is not a homomorphism. However :

PROPOSITION 2.4. Let AY C A denote the subalgebra of elements
invariant under conjugation by W. Then the restriction of m to AV is
an algebra homomorphism.

Proof. If A € AV, then clearly m(A) is W-invariant. Now if we
take A,B € A" and f a W-invariant function we have that B(f) is also
W -invariant. So |

m(AB)(f) = (AB)(f) = AB(f)) = A(m(B)(f)) = m(A)(m(B)(f)) -

Thus m(AB) and m(A)m(B) coincide on W-invariant functions and hence
coincide. [

2.5 DUNKL OPERATORS AND SYMMETRIC QUANTUM INTEGRALS

In this subsection we will construct quantum integrals of the Calogero-
Moser operator. This construction is due to Heckman [He] and is based on
the Dunkl operators, introduced in [Dul].

Fix a W-invariant function c: £ — C such that 8y = c4(¢cy + 1) for each
s € X. Set d¢ := [[;cy as(x)* and define

L=68.(x)Hb(x)" 1.
Then an easy computation shows that
ZCS
L=A- O 4

2o
where, for a vector y € §j, the symbol 0y denotes, as usual, the partial
derivative in the y direction (notice that using the scalar product we are
viewing «y as a vector in f orthogonal to the hyperplane fixed by s).

From now on we will work with L instead of H and study the eigenvalue
problem

4) Lip = .

It is clear that 1) is a solution of this equation if and only if J.(x)"!%) is a
solution of (3).

Since for any s € X and f € C[h] we have that f(sx) — f(x) is divisible
by a,(x), the operator

1
as(x)(s_ He A

maps C[h] to itself.
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DEFINITION 2.5. Given y € b, we define the Dunkl operator Dy on C[h]
by

D=0+ Y e s -,
sEX s

We have the following very important theorem.

THEOREM 2.6 ([Du]). Let y,z € h. Then
[DyaDz] =0.

Proof. See [Du], [Op]. [

PROPOSITION 2.7 (Heckman [Hel). Let {yi,...,yn} be an orthonormal
basis of Y. Then we have

m(i D;)=L
i=1

Proof. Observe that m(3> ), D2) =7, m(D3), so we need to compute
m(D}) for y € h. We have m(D}) = m(Dym(D,)) = m(Dy0y). A simple
computation shows that

85 2 S
D3, =%+ 3 2D - 22280, 0.
SEZ S S S

Thus

2
mD?) = 0 23 ¢ 22Y)

(s, ag)ars(x)

We get

(0, 05 0g(X)

n n 2
1\ O, Y
OBIED SLAE) BRI N
i=1 i seX
since Z?zl(asyyi)z - (aﬁ CVS)' D

We are now ready to give the construction of quantum integrals of L.
Consider the symmetric algebra S = C[yy,...,y,] which we can identify,
using the fact that the Dunkl operators commute, with the polynomial
ring C[D,,,...,D,] C A. The restriction of m to Sh" is an algebra
homomorphism into the ring D(U) (and in fact into D(U/W)). Since Sh" is
itself a polynomial ring Clgqi,...,q,], with q1,...,q, of degree di,...,d,,




50 P. ETINGOF AND E. STRICKLAND

d; being the degrees of basic W-invariants, we obtain a polynomial ring of
commuting differential operators in D(U). Given g € Clqy, ..., q,] we will
denote by L, the corresponding differential operator. We may assume that
g1 = > ., ¥7 so that L = L, . Thus for every q € Clgi,...,qal, L, is a
quantum integral of the quantum Calogero-Moser system. In particular, the
operators L, ,...,L, are n algebraically independent pairwise commuting
quantum integrals.

Now the eigenvalue problem (4) may be replaced by
L,y = At

for p € Clgi,...,9,], where the assignment p — X, is an algebra
homomorphism Cig,...,q,] — C.

In other words, we may say that since Clgi,...,q,] = C[h*/W] =
C[h/W], for every point k € h/W, we have the eigenvalue problem

S) Ly = p(k)p .

PROPOSITION 2.8. Near a generic point xo € by, the system Ly = p(k)y
has a space of solutions of dimension |W|.

Proof. The proposition follows easily from the fact that the symbols of
L, are g;(0), and that Cly,...,y,] is a free module over Clg,...,g,] of
rank |[W|. [

2.6 ADDITIONAL INTEGRALS FOR INTEGER VALUED c

If ¢, ¢ Z, the analysis of the solutions of the equations L,y = p(k)i) is
rather difficult (see [HO]). However, in the case c: ¥ — Z, the system can be
simplified. Let us consider this case. First remark that, since §; = ¢(c;+1), by
changing c; to —1 — ¢, if necessary, we may assume that ¢ is non-negative.
So we will assume that ¢ takes non-negative integral values and we will
denote it by m.

System (5) can be further simplified, if we can find a differential
operator M (not a polynomial of L, ,...,L, ) such that [M,L,] = 0 for
all p € Clq,...,q,]. Then the operator M will act on the space of solutions
of (5), hopefully with distinct eigenvalues. So if p is such an eigenvalue, the
system

{Lp¢=p<k>¢
My = pi
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will have a one dimensional space of solutions and we can find the unique
up to scaling solution ¢ using Euler’s formula.

Such an M exists if and only if ¢ = m has integer values. Namely, we will
see that one can extend the homomorphism Clgi, ..., ¢,] — D(U) mapping
q — L, to the ring of m-quasi-invariants Oy, .

We start by remarking that under some natural homogeneity assumptions,
if such an extension exists, it is unique.

PROPOSITION 2.9. 1) Assume that g € Clyy,...,y.] is a homogeneous

polynomial of degree d. If there exists a differential operator M, with
coefficients in C(h), of the form

M, = q(0y,,...,0,,) + Lo.t.

such that [M,,L] =0, whose homogeneity degree is —d, then M, is unique.

2) Let Clqi,...,q.0 € B C Clyy,...,ya] be a graded ring. Assume that
we have a linear map M: B — D(U) such that, if g € B is homogeneous of
degree d, then [M,,L] =0, M, has homogeneity degree —d, and

M, = q(0y,,...,0y,) + Lo.t.
Then M is a ring homomorphism and M, = L, for all g € Clqy,...,qx].

Proof. 1) If there exist two different operators M, and Mé] with these
properties, take M, — M(’]. This operator has degree of homogeneity —d, but
order smaller than d. Therefore, its symbol S(x,y) is not a polynomial. On
the other hand, since the symbol of L is Y y7, we get that [L, M, —M,] =0
implies {>_y?,S(x,y)} = 0. Write S in the form K(x,y)/H(x) with K is a
polynomial, and H(x) a homogeneous polynomial of positive degree ¢ (we
assume that K(x,y) and H(x) have no common irreducible factors). Then

B ) > yiKe (G, H @) — Y yiH (0K (x, )
0'— {Zyl,S(X,y)}‘z H(X)2 P

Since Y :_, x;Hy(x) = tH(x), we have >  yiH,(0)K(x,y) # 0. So H(x)
must divide this polynomial and, by our assumptions, this implies that it must
divide the polynomial » ., y;H,(x) whose degree in x is ¢ — 1. This is a
contradiction.

2) Let g,p € B be two homogeneous elements. Then M,M, and M, both
satisfy the same homogeneity assumptions. Hence they are equal by 1).

Finally if ¢ € Clqy,...,g.], both M, and L, satisfy the same homogeneity
assumptions. Hence they are equal by 1). [
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The required extension to the ring of m-quasi-invariants is then provided
by the following

THEOREM 2.10 ([CV1, CV2]). Let ¢ = m: X — Zy. The following
two conditions are equivalent for a homogeneous polynomial g € C[h*] of
degree d.

1) There exists a differential operator
L, =4q(0y,,...,0,,)+ lo.t

of homogeneity degree —d, such that [L,, L] = 0.
2) q is an m-quasi-invariant homogeneous of degree d.

Using this, we can extend system (5) to the system

(6) Lyp =p(k)y, p€Qm, keSpecQy=Xn.

(Recall that, as a set, X,, = h.) Near a generic point xy € b, system (6)
has a one dimensional space of solutions, thus there exists a unique up to
scaling solution (k, x), which can be expressed in elementary functions. This
solution is called the Baker-Akhiezer function, and has the form

Wk, x) = P(k,x) ™

with P(k,x) a polynomial of the form §(x)6(k) + Lo.t. and e*® denotes the
exponential function computed in the scalar product (k,x). Furthermore, it
can be shown that 1 (k,x) = ¥(x, k) (see [CV1, CV2, FV]).

These results motivate the following terminology. The variety X,, is called
the spectral variety of the Calogero-Moser system for the multiplicity function
m, and Q,, is called the spectral ring of this system.

2.7 AN EXAMPLE

EXAMPLE 2.11. Let W=12Z/2, h = C, m = 1. As we have seen, Oy
has a basis given by the monomials {x*} U {x**3}, i > 0. Let us set for
such a monomial, L, = L,, and 0 = %. Then we have

2 3 3
Li=1, L,=8-20, Ls3=0"-=0"+50.
X X X

As for the others, Ly, = Lg, Ltz = LéL3. (Note that L; is not defined). The
system (6) in this case 1s

2p// _ %w/ - kzw’
X

1 3 3 '
W =2y W =Ry,
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The solution can easily be computed by differentiating the first equation and
then subtracting the second, thus obtaining the new system
w// . % ¢/ — k2 ?p

X
1

77b/l o (__ 4 kzx)wl — —k3x¢ ]
X

Taking the difference, we get the first order equation

k2

V=

whose solution (up to constants) is given by ¢ = (kx — 1) et

In fact, one can easily calculate ,, for a general m.

PROPOSITION 2.12.  t),(k,x) = (x0 —2m~+ 1)(x0 —2m —1) - - - (x0 — 1) €**.

Proof. We could use the direct method of Example 2.11, but it is more
convenient to proceed differently. Namely, we have

(0% — %’”axxa —2m+1)= @0 —2m+ 1)(8* — @8)

as it 1s easy to verify directly. So using induction on m starting with m =0,
we get

(@ — 20y, ) = (00— 2m 1 1) D 1) = Rl ),

and 1,,(k,x) is our solution.  []

3. LECTURE 3

3.1 SHIFT OPERATOR AND CONSTRUCTION OF THE BAKER-AKHIEZER FUNCTION

In Lecture 2, we have introduced the Baker-Akhiezer function 1 (k,x) for
the operator
2¢
L=A- >
2 o

The way to construct ) (k,x) is via the Opdam shift operator. Given a function
m: 2 — Z,, Opdam showed in [Opl] that there exists a unique W -invariant
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differential operator S, of the form 0,,(x)0,,(0x)+1.0.t., with §,,(x) = [[;c5 o®
such that '
LySm = Snq(0)

for every g € C[h] = Clqi, ..., q,]. From this, if we set ¢ (k,x) = S,e*?,
we get

7 Ly = Snq(0) e = q(k)y,

qc C[Q];---aQn]-

We claim that equation (7) must in fact hold for all ¢ € Q,,. Indeed, near a
generic point x, the functions 1 (wk,x) are obviously linearly independent and
satisfy (7) for symmetric g. Thus, they are a basis in the space of solutions
(we know that this space is |W|-dimensional). Consider the matrix of L, in
this basis for any g € Q,,. Since v (k,x) is a polynomial multiplied by e®**,
this matrix must be diagonal with eigenvalues g(k), as desired.

EXAMPLE 3.1. As we have seen in the previous section, for W = Z/2
and h =C,

Smw= @0 —2m+ 1)x0 —2m—1)---(x0 — 1).

3.2 BEREST’S FORMULA FOR Lq

We are now going to give an explicit construction of the operators L, for
any q € Op,.
Let us identify, using our W-invariant scalar product, fj with h*, and let
us choose a orthonormal basis x;,...,x, in h*. If x € h*, we will write D,
for the Dunkl operator relative to the vector in ) corresponding to x under
our identification. Thus i
L=>) D..
i=1

PROPOSITION 3.2 (Berest [Bel). If g € O, is a homogeneous element of

degree d, then
(adL)"lg =0.

Proof. It is enough to prove that
((ad L)** gk, x) = 0.

Indeed, it follows from the definition of (k,x) that in the ring D(U) this
implies : ((ad L)**'¢)S,, = 0, so that (ad L)**! g = 0, since D(U) is a domain.
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Given g € Qp, we will denote by L% the operator g(Dy,, - - -, Dy,). Notice
that since ¥k, x) = (x,k), we have LPy = g(x)¢p. Thus we deduce, for

P,q," € O,

L,r(0)Lytp = Lyr(0p(kyy = p(k)Lyr(x) 9
= p(k)L,LPp = p(LP L = p()LPq(k) -

It follows that

(@d L) gy = (=1 @O kLY.
i=1

Since L, is a differential operator of degree d, we get ad(} kLY =0,
as desired. L[]

Notice now that the operator (adL)?q(x) commutes with L. Its symbol is
given by (ad A)?q(x) = 2¢d!q(d). So we deduce the following

COROLLARY 3.3 (Berest’s formula, [Bel). If g € O, is homogeneous of
degree d, then
1

Ly = i

(ad L)?q(x) .

Proof. This is clear from Proposition 2.8, once we remark that (ad L)Y q(x)
has the required homogeneity.  []

We want to give a representation theoretical interpretation of what we have
just seen. Consider the three operators

> X L
8) > X H=[E,F]
It is easy to check that [H,E] = 2E, [H,F] = —2F. We deduce that
the elements E,F,H span an sl(2) Lie subalgebra of D(U). Thus sl(2)

acts by conjugation on D(U). We can then reformulate Proposition 3.2 as
follows :

PROPOSITION 3.4. Any polynomial q € Q,, of degree d is a lowest weight
vector for the sl(2)-action of weight —d and generates a finite dimensional

module (necessarily of dimension d + 1) for which L, is a highest weight
vector.
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Proof. An easy direct computation shows that
H=[E F]——ix-i%—c
T i=1 0% ,

where C is a constant. Thus if g is homogeneous of degree d, we have
[H,L,] =dL,.

This and the fact that [L,L,] = 0, implies that L, is a highest weight vector
of weight d. Also since F is a polynomial, we deduce that adF‘H'qu =0,
so that L, generates a (d + 1)-dimensional irreducible s[(2)-module. L]

One last property about these operators is given by

PROPOSITION 3.5 ([FV]). For any q € Oy, the operator L, preserves Q.

Proof. Let us begin by proving that L preserves Q,,.

Take f € Qn, so that for any s € X, f — 5f = o?™*t, t € C[B].
Let us start by showing that Lf is a polynomial. Clearly Lf = 6. !g, with
g € C[b], and ¢, = Hszmﬁéo o, . Since L is W-invariant, Lf —°(Lf) = L(f — °f)
is clearly divisible by o?™~! if m; > 0. In particular, it is always
regular along the reflection hyperplane of s. On the other hand, since
Lf — S(Lf) = 6-'(q + °q), we deduce that g + g is divisible by «; if
mg > 0. But then ¢ = ((g + °q) + (¢ — *¢))/2 is divisible by «y if m; > 0,
hence it is divisible by ¢, so that Lf lies in C[h].

We have already remarked that L(f — *f) is divisible by 2™~ if m; > 0.
In fact

L(f — *f) = La>™ Nt 4 ™%,

where 7 is a suitable polynomial.

But since
2my
LaZ™ 1 = 2my(2m, + D(as, 0302 = 2my@my + 1)y (o, )™
s'EX g
' aSZm
= —2my(2m; + 1) Z (ar, arg) P

s'EX 5! s

we deduce that L(f — °f) is divisible by «2™. On the other hand, since
L(f — °f) = Lf — 5(Lf), this polynomial is either zero or it must vanish to odd
order on the reflection hyperplane of s. We deduce that it must be divisible
by o2™t1, proving that Lf € Q,,.
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We now pass to a general L,, g € Q,. We may assume that g 18
homogeneous of, say, degree d. By Corollary 3.3 we have that L, is a non
zero multiple of (adL)*(g). Since both g and L preserve Q,., our claim
follows. [l ‘

3.3 DIFFERENTIAL OPERATORS ON X,

Now let us return to the algebra of differential operators D(X,,). Notice
that D(X,,) contains two commutative subalgebras (both 1somorphlc to On).
The first is Q,, itself, the second is the subalgebra Qm consisting of the
differential operators of the form L, with g € Q. It is possible to prove

THEOREM 3.6 ([BEG]). D(X,,) is generated by Qn and Q.

Notice that by Corollary 3.3 we in fact have that D(X,,) is generated by
Omn and by L.

EXAMPLE 3.7. If W=1Z/2, h = C we get that D(X,,) is generated by
the operators

Theorem 3.6 together with Proposition 3.4, imply

COROLLARY 3.8 ([BEG]). D(X,,) is locally finite dimensional under the
action of the Lie algebra sl(2) defined in (8).

This Corollary implies that our s{(2) action on D(X,,) can be integrated
to an action of the group SL(2). In particular we have

0 1
(5 o) o=

for all g € Q,,. This transformation is a generalization of the Fourier transform,
since it reduces to the usual Fourier transform on differential operators on b
when m = 0.

EXAMPLE 39. If W = Z/2, h = C, we get that the monomials
{x¥} U {x?*2m+11 are (up to constants) all lowest weight vectors for the s[(2)
action on D(X,,). x* has weight —n. We deduce that D(X,,) is isomorphic as a

sl(2)-module to the direct sum of the irreducible representations of dimension

n+1 for n even or n =2(m-+1i)+ 1, each with multiplicity one.
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3.4 THE CHEREDNIK ALGEBRA

Let us now return to the algebra A of operators on U generated by D(U)
and W. This algebra contains the Dunkl operators

D, = 8y+ch

SEX

(ozs,y)(s .
o

LEMMA 3.10. The following relations hold :

[xi)xj] — [DXNDXJ'] - 07 VI S l7.] S n

Dyl = b5+ 3 e 200 gy < iy
= (0, Cts)

wxw ™! = w(x), wDyw_1 =Dyyy, YweW,xebh*, yeh.

Proof. The proof is an easy computation, except for the relations
[Dy,, D] = 0, which follow from Theorem 2.6.  []

This lemma motivates the following definition.

DEFINITION 3.11 (see e.g. [EG]). The Cherednik algebra H, 1s an
associative algebra with generators x;,y;,i = 1,...,n, and w € W, with
defining relations

[xi:xj] = [ylayj] = 07 V1 < la] <n
i, %] = 6 + Z N (i, o) (x5, )

ex (0, ag)

S, V1 SlL] _<_7’l

wrw™! = w@), wyw™ = w), wew =ww, Yw,w €W, x€h*, yeb.

This algebra was introduced by Cherednik as a rational limit of his
double affine Hecke algebra defined in [Ch]. Notice that if ¢ = 0 then
Hy = D(h) x C[W].

Lemma 3.10 implies that the algebra H, is equipped with a homomorphism
¢: H. — A, given by w — w, x; = xi, ¥i — Dy,

Cherednik proved the following theorem.

THEOREM 3.12 (Poincaré-Birkhoff-Witt theorem). The multiplication map
p: Clhl® Clh*] ® C[W] — H.

given by u(f(x) ® g(y) @ w) = f(x) gy)w is an isomorphism of vector spaces.
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Proof. 1t is easy to see that the map p is surjective. Thus, we only have
to show that it is injective. In other words, we need to show that monomials
x’f ...xf;y{‘ . yiw are linearly independent in H,.. To do this, it suffices to
show that the images of these monomials under the homomorphism ¢, i.e.
xif x;D!C} ...D){,’;w, are linearly independent.

Given an element A € A, writing A=) . P,w with P, € D(U) we
define the order of A, ordA, as the maximum of the orders of the P, ’s.
Notice that ordAB <ordA+ordB. We now remark that for any sequence of
non negative indices (iy,...,i,),

Dl ---Dir =i ... 9 4 Lout.

Indeed this is true for D,,. We proceed by induction on r =i +---+1i,. We
can clearly assume i; > 0, so by induction,

Dy Dy = 0y 4 Lot )02+ 0 + Lot) = 1 -+ O + Lo.t.

From this we deduce that for any pair of multiindices I = (iy,...,i,),
J = (i,.- ), w € W, setting x; = x;""---x,", D; = Di ---Dj",
0y =04l --- 0}, we have

xiDyw = x;0;w + lo.t.

Using this and the linear independence of the elements x;0;w, it is immediate

to conclude that the elements x;D;w are linearly independent, proving our
claim. [

REMARK 1. We see that the homomorphism ¢ identifies H. with the
subalgebra of A generated by C[h], the Dunkl operators D,, yeh and W.

REMARK 2. Another way to state the PBW theorem is the following. Let
F* be a filtration on H, defined by deg(x;) = deg(y;) = 1, deg(w) = 0. Then
we have a natural surjective mapping from C[h x h*] x W to the associated

graded algebra gr(H.). The PBW theorem claims that this map 1is in fact an
isomorphism.

3.5 THE SPHERICAL SUBALGEBRA

Let us now introduce the idempotent

1
e:—“—/ZwGC[W].
wew



|
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DEFINITION 3.13. The spherical subalgebra of H. is the algebra eH_ e.

Notice that 1 ¢ eH.e. On the other hand, since ex = xe = e for
x € eH.e, e 1is the unit for the spherical subalgebra. We can embed both
C[h*1"¥ and C[h]" in the spherical subalgebra as follows. Take f € C[h*]"
(the other case is identical) and set m.(f) = fe. Since f is invariant, we
have efe = fe* = fe = m,(f), so that m, actually maps C[h*]" to eH_e.
The injectivity is clear from the PBW-theorem. As for the fact that m, is a
homomorphism, we have m.(fg) = fge = fge*> = fege = m,(f)m.(g). From
now on, we will consider both C[h*]" and C[h]" as subalgebras of the
spherical subalgebra.

3.6 CATEGORY O

We are now going to study representations of the algebras H, and eH_ e.

DEFINITION 3.14. The category O(H.) (resp. O(eH.e)) is the full
subcategory of the category of H,.-modules (resp. eH.e-modules) whose
objects are the modules M such that

1) M 1s finitely generated.

2) For all v € M, the subspace C[h*]"v C M is finite dimensional.

We can define a functor
F: OH,) — O(eH_.e)

by setting F(M) = eM. It is easy to show that F(M) is an object of O(eH._e).

We are now going to explain how to construct some modules in O(H,)
which, by analogy with the case of enveloping algebras of semisimple Lie
algebras, we will call Whittaker and Verma modules. First, take A € h*.
Denote by Wy C W the stabilizer of A. Take an irreducible W) -module 7.
We define a structure of C[h*] x C[W)]-module on 7 by

(fw)v = fN)(wv) Yv eT, we Wy, feClh*].

It is easy to see that this action is well defined and we denote this module
by AM#r. We can then consider the H.-module

M\, 7) = He ®cry*1sCiwa] AFT

This is called a Whittaker module. In the special case A = 0 (and
hence W) = W), the module M(0,7) 1s called a Verma module. It is

- clear that these are objects of (0. Notice that as C[h] x C[W]-module,

M\, ) = C[hH] ®c CIW] @ctwy) T-
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EXAMPLE 3.15. If A =0 and 7 = 1 is the trivial representation of W, the
Verma module M(0,1) = C[h]. The action of C[h] is given by multiplication,
that of C[h*] is generated by the Dunkl operators and W acts in the usual way.

3.7 GENERIC c

Opdam and Rouquier have recently studied the structure of the categories
O(H,.), O(eH_.e), and found that it is especially simple if ¢ is “generic” in a
certain sense. Namely, recall that for a W-invariant function g: X — C* one
can define the Hecke algebra He,(W) to be the quotient of the group algebra
of the fundamental group of U/W by the relations (75— 1)(T;+g;) = 0, where
T, is the image in U/W of a small half-circle around the hyperplane of s in
the counterclockwise direction. It is well known that He, (W) is an algebra
of dimension |W/|, which coincides with C[W] if ¢ = 1. It is also known
that He,(W) is semisimple (and isomorphic to C[W] as an algebra) unless g
belongs for some s to a finite set of roots of unity depending on W (see [Hul]).

DEFINITION 3.16. The function c¢ is said to be generic if for g = e*™,
the Hecke algebra He,(W) is semisimple.

In particular, any irrational ¢ is generic, and (more important for us) an
integer valued ¢ is generic (since in this case g = 1). We can now state the
following central result:

THEOREM 3.17 (Opdam-Rouquier [OR]; see also [BEG] for an exposition).
If ¢ is generic (in particular, if c takes non negative integer values), then
the irreducible objects in O are exactly the modules M(\, T). Moreover, the
category O is semisimple.

We also have

THEOREM 3.18 ([OR]). If c is generic then the functor F is an equivalence
of categories.

From Theorem 3.17 we can deduce
THEOREM 3.19 ([BEG]). If c is generic, then H. is a simple algebra.

In the case ¢ =0, we get the simplicity of C[h @ h*] x C[W], which is

~ well known.
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3.8 THE LEVASSEUR-STAFFORD THEOREM AND ITS GENERALIZATION

Lf:t us now recall a result of Levasseur and Stafford:

THEOREM 3.20 ([LS]). If G is a finite group acting on a finite dimensional

vector space V over the complex numbers, then the ring D(V)C is generated
by the subrings C[V]® and C[V*]°.

As an example, notice that if we let Z/nZ act on the complex line by
multiplication by the n™ roots of 1, we deduce that the operator x% can
be expressed as a non commutative polynomial in the operators x" and (i:,,,
a non-obvious fact. We note also that this theorem has a purely “quantum”
nature, 1.e. the corresponding “classical” statement, saying that the Poisson
algebra C[V x V*1¢ is generated, as a Poisson algebra, by C[V]® and C[V*]°,
is in fact false, already for V= C and G =Z/nZ.

One can prove a similar result for the algebra eH.e. Namely, recall that
the algebra eH.e contains the subalgebras C[h]", and C[H*]".

THEOREM 3.21 ([BEG]). If c is generic then the two subalgebras C[H]V
and C[h*1V generate eH.,e.

Notice that if ¢ = 0, then eHye = D(h)", so Theorem 3.21 reduces to
the Levasseur-Stafford theorem.

REMARK. It is believed that this result holds without the assumption of
generic ¢. Moreover, it is known to be true for all ¢ if W is a Weyl group
not of type E and F, since in this case Wallach proved that the corresponding
classical statement for Poisson algebras holds true. Nevertheless, the genericity
assumption is needed for the proof, because, similarly to the proof of the
Levasseur-Stafford theorem, it is based on the simplicity of H..

3.9 THE ACTION OF THE CHEREDNIK ALGEBRA TO QUASI-INVARIANTS

We now go back to the study of Q,,. Notice that the algebra eH,,e acts on
C[h1%, since e gives the W-equivariant projection of C[h] onto C[h]". It is
clear that this action is by differential operators. For instance, the subalgebra
C[H]" C eH,e acts by multiplication. Also, an element g € C[H*1V C eH,e
acts via the operator q(Dy,,...,D, ). By definition this operator coincides
with L, on C[h]".
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The following important theorem shows that this action extends to Q.

THEOREM 3.22 ([BEG]). There exists a unique representation of the
algebra eH,e on Q,, in which an element q € C[01V acts by multiplication
and an element q € C[h*]" by L,.

Proof. Since by Proposition 3.5, L, preserves O, we get a uniquely
defined representation of the subalgebra of eH,e generated by C[h]" and
C[b*]W on Q,,. The result now follows from Theorem 3.21. ]

3.10 PROOF OF THEOREM 1.8

Finally we can prove Theorem 1.8.

To do this, observe that as an eH,e-module, Q,, i1s in the category
O(eH,e), and C[h*]" acts locally nilpotently in Q,, (by degree arguments).
We can now apply Theorem 3.18 and Theorem 3.17 and deduce that Q,, i1s
a direct sum of modules of the form eM(0,7). As a C[h] x C[W]-module,
M0, 7) = C[h] ® 7. On the other hand, by Chevalley’s theorem, there is an
isomorphism C[h] ~ C[H]¥ ® C[W], commuting with the action of W and
C[H]". Thus we get an isomorphisms of C[h]" -modules

eM(0,7) ~ (MO, )" ~ C[H]" @ (CIW] @)Y ~CHV &7,

proving that eM(0,7) and hence Q,, is a free C[h]" -module. []

EXAMPLE 3.23. For W = Z/2 and h = C, take the polynomials 1, x>"+!.
Notice that L(1) = L(x*"*1) = 0 while s(1) = 1, sG> 1) = —x¥"+! s € Z/2
being the element of order two. It follows that O,, as a eH,,e-module is the
direct sum of C[x*] @ x*"+!C[x?]. These modules are irreducible. Moreover,
Clx?] ~ eM(0,1), x*"F1C[x*] ~ eM(0,¢), € being the sign representation.

3.11 PROOF OF THEOREM 1.15

Let I be a nonzero two-sided ideal in D(X,,). First we claim that [
nontrivially intersects Q,,. Indeed, otherwise let K € I be a lowest order
nonzero element in 7. Since the order of K is positive, there exists f € Q,, such
that [K,f] # 0. Then [K,f] € I is of smaller order than K, a contradiction.

Now let f € Qn be an element of 7. Then g = [[, . *“f € I. But g
is W-invariant. This shows that the intersection J of I with the subalgebra
H, in D(X,,) is nonzero. But H,, is simple by Theorem 3.19, so J = H,,.
Hence, 1 € J C I, and I = D(X,,). [
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