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LEMME 5.3. Soit F une fonction C1 sur [0,1] bornée en valeur absolue

par 1 et telle que |E7(Y)| < M. Notons m2 /q \F(t)\2dt. Soit ensuite X une

mesure de probabilité sur [0,1] et notons par A(u) le maximum des À|Y, t+u]
pour tout t dans [0,1 — u\. Nous avons alors pour tout r > 0

[ \F(t)\dX <2r + A(r/M)(l + m2Mr~3).

Démonstration. Recouvrons [0,1] par au plus M/r intervalles disjoints
de longueur r/M. Il reste au plus un intervalle de plus petite longueur. Soit
N le nombre de ces intervalles sur lesquels sup|F(Y)| > 2r. En utilisant le
théorème des accroissements finis, nous constatons que \F(t)\ > r sur tous
les intervalles considérés. Par conséquent

m2 > Nr2
~ M

Il vient

[ \F(t) \ dX < 2r + (N + l)A(r/AQ
Jo

< 2r + A(r/M)(l + m2Mr~3).

6. Estimation de la transformée de Fourier

Nous nous occupons ici du comportement asymptotique de

ß(u) — / e(ut)dß(t)
Jo

pour \u\ grand; nous supposerons, sans rectriction, u positif.
Commençons par rappeler que si a [0; au a2,... ] et t TJ(x)

[0, aj.|_i j... ]

[0;aua2,...,aj + t]
Pj + tPj-i
Qj + tQj-1

Qj (Qj + tQj_i)Qj
'

Partons donc de J JcJq fixe: par construction, nous pouvons décomposer
notre mesure p sous la forme

F y x • • • x vt xp := pk x p
k
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de sorte que

m=/' Ie (êErSS") dp,("m"

:= [ F(t)d/j,(t),
Jo

ou

(10)

à laquelle nous nous proposons d'appliquer les lemmes précédents. Puisque
J est fixé, nous avons

(11) ßI_2e < Qj<Q1+26,^}Q'~2e < i < ß1+2£
»

avec Q — exp(/crm(5)) ; mais, comme <2 tend vers l'infini avec /, nous

pouvons le choisir au voisinage d'un nombre fixé à l'avance, à une constante

multiplicative près (constante comprise entre exp(Joam(ô)) et son inverse).

Nous commençons par déduire des lemmes 5.1 et 5.2 une estimation de

m2 /o \F(t)\2dt.

LEMME 6.1. Si Q2+4S > u, nousavons

fX ,2 ô1+ Q6e

Démonstration. En développant le carré, nous obtenons

T ,F(')|J<*= ///' ' - «rfe) ")

où Pj,Qj,. sont des variables indépendantes de Pj, QJl... et identiquement

distribuées. Notre expression se réécrit:

IIiiïrPcé)u)Le(md'dndn
où l'on a posé

/(—l)Jw £(— l)Ju
(i2) m (Qj + tQj-i)Qj (Qî + tQÎ^QJ

L'argument f(t) de l'exponentielle admet pour dérivée:
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f'(t) ((Qj +tQj-1)2( l)U

soit encore

_
(Qj+QÎ + KQJ-I + ôy-i)X0 - 0 + X0-i -; } (0 + *ß/-i)2(0 + *0_i)2

qui pourra s'écrire g(t)(o:t + ß) avec :

0 + 0*+f(0-i + 0_i)
5W (0 + *0-i)2(0*+*0_i)2

1 1

~ (0+*0-i )(0+*0_i)2
+ (0+*0-i)2(0+*ei-i) '

Il nous faut aussi calculer

9'{t) ~(0 + *0-l)2(ö} + *öy_i)2Ä(O

où nous avons posé

,2QU<.Ql +tQj-<),HO &-,+&-,+ w+lQU)
+ (a + ,a_,)

•

Nous poursuivons l'estimation de

(13) [ notée k(Qj,Qj-uQ*j,QÎ-i)
J o

en discutant selon l'existence ou non d'un point stationnaire pour /, i.e.

d'un point t G [0,1) tel que f{t) 0 ce qui impose Qj~\ ^ ö}_i>
^=-(ß>-0)/(ß/-i-Öj-i)e[O,l).

1) Tout d'abord rappelons (voir (4)) que si Qj~\ ßjLi Qj — Qj,
at a* pour tout / < J ; les points Pj/Qj et P}/Q} sont donc confondus, et

ft(ô/î ô/-i, ôy, ßy_i) 1 d'après (12) et (13). Compte tenu du lemme 2.1 et
du caractère hôldérien de ß (proposition 4.1 a)), la contribution de ce terme
dans le calcul de la transformée de Fourier sera au plus

[f <Qj,Qj-uQhQLi)dpkdpk
J J {Qj=Q*,Qj-x=Q*^}

f/r
iJ W&+W>'n

1

^ Q2ô-ôe
'
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2 a) Supposons qu'il y ait un point stationnaire (en particulier ß/-i i=-

alors le lemme 5.2 donne

(i4) «(ô7,Ô7-I, Qj,Ô;.i)«
ö2+23£

Ö7-11M

En effet, avec les notations du lemme 5.2,

\g(t)\ >a=^ô"3_6e,

et

Ifl'Wl < 1O03+14<S

l'estimation suit en se rappelant que

\a\ \Qj-l-Q*J_l\u.

b) Supposons maintenant plus généralement que 1 < \Qj~\ — ô/_i | < #0
et |(ß/ — Qj)/(Qj-i — Qj-\)\ < 2; si H décrit les entiers de la forme 2J

entre 1 et Hq, cet ensemble est approximativement la réunion sur j des

ensembles

y-1 < I07-1 - I < y, 10 -0= < - 0^|.
En posant H 2/,

{H/2 < IÖ7-! - 0_, I < //, |0 - 0| < 2|0_1 - I }

c {Ä/2 < |0-1 - I < 0 10- 01 < 2tf}

de sorte que

/ / ^P&

< / / dPk dpk
J J{H/2<\Pj-P*\<H, \Qj-Q*\<2H}

en utilisant l'invariance de la mesure pk par la transformation (<21,..., aj) —^

(a/,...,ai) (proposition 4.1 b)) ainsi que (2) et (3).
Or les hypothèses Hj2 < |P/ — PJ | < //, |ß/ — Qj\ < 2H impliquent

clairement,

< 0/-01 I0-0IA* g
0 0 - 0 00 0-2e '
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donc, si nous conservons dans ce cas les estimations 14 de k, obtenues dans

le cas a) d'existence d'un point stationnaire, nous obtenons une contribution
de l'ordre de

II <QJ,QJ-UQ*J,Q*J-I) dpkdpk
{H/2<| Qj_,-e;_, |<H, |Qj-Q* |<2|Qj-i-Q*_, |}

< ~
/=- / / P, dpkdpk

JJ U<k<H/Q

Qï
Hü JJ L

+23e

< ^77

Vïïû

q\ +23e

Vïïû
en se souvenant de la propriété hôldérienne de (x (proposition 4.1 a)).

En sommant sur j, nous trouvons pour l'ensemble

{1 < \Qj-i~QU| < Ho, \Qj - Q*j\<2|Qj_x - | }

une contribution totale d'au plus

<2^+23£ 5-1,2
QSU0 '

c) Si \Qj~i — Q}_x\ > Hq cette fois, le même lemme fournit une
contribution de l'ordre de

ßi+237Vhûû.

3a) Si ßy_! ^ Qj_jet | (Qj-Qj~> 2, il n'y a pas
de point stationnaire et nous sommes dans les conditions d'application du
lemme 5.1 qui nous donne la majoration

>o3+26e
(15) VQj,QJ-UQJ,QUX

(|<2/-ôJ| + |Ô7-I-Ô;_J|
En effet il résulte des calculs précédents, en reprenant la minoration de

\g(t)\, que

l/'coi> \ß\\g(t)\ > «ö"3_fe|ßy- q;i
et en dérivant fit) (at+ ß)g(t) nous déduisons

\f"(t)\<\a\\g(t)\ + (\a\ + \ß\)\g'(t)\

« Q-3~6£\Qj - Q*j\u + Q~3+Ue(\Qj - I + | - )"
« Q~3+14£(\QJ - Q*j\+ |ßy_i - QU I)«,

d'où la majoration annoncée.
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Le cas \Q > Hq ayant été pris en compte à l'étape
précédente, il suffit de considérer l'ensemble 1 < \Qj-i ~QU\<Ho,

| (Qj— Q*j)/(Q.i-\ — Qj—i)| > 2 et la discussion se poursuit ainsi:

b) Supposons 1 < | Qj-i— Qj-i\et|Qj - 1 > 2H0 ; la

majoration du lemme 5.1 nous donne une contribution de

Q3-\-26e

H0u

c) Supposons | | < 2Ho (ce qui implique 1 < |Ô7-1 - ô/-l| <
H0); cet ensemble se décrit comme la réunion sur avec 1 < 2' < Hq, des

ensembles

{ QJi- Qj-I| < V, y<\Qj-QJ\< 2i+l}.

Utilisons alors les estimations (15) de k, établies dans le cas a) sans point
stationnaire, nous obtenons par des arguments similaires

II K(QJ-, Qj-1, Qj-1 dpkdpk
{i<|ßj-i-e;_,|<ff, h<\qj—Qj \<2h}

qS+26erç«C —JJdpkdpk
<

Hu J J{l<\Pj-P*\<H, H<\Qj~Q*j\<2H}

g3+2fe ff
Hu JJ Pj__ <H/Q

dpkdpk

q3-\-26e

« TT""«'
En sommant sur j, nous trouvons pour l'ensemble

{1 < I Qj-X-QUI< Ho, | Qj -Q*J|> 2| Qj-X- QU\}
une contribution totale d'au plus

g3+26e

HpWu'

Il s'agit en fait essentiellement du carré de la quantité précédente. Comme

notre intégrale est inférieure à 1, nous pouvons négliger ce terme (aux Q26e

près).
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4) Enfin la dernière contribution qu'il faille ajouter vient du cas Qj~\
Qj_i mais Qj ^ QJ ; il se traite comme le cas 3) précédent et fournit un

terme majorant du même ordre de grandeur.

Nous sommes en mesure de terminer la preuve du lemme : le choix optimal
dans l'estimation est donné par H0 Q ; en négligeant la contribution des

cas 3) et 4), cela nous donne

Cl 9 QI-\-26s QÔ£

|^(0| dt + 7^J o V u y
comme attendu.

Pour estimer ß(u) /J F(t) d[i{t), nous pouvons maintenant utiliser le

lemme 5.3 avec la fonction F et la mesure /x : par construction, la fonction
de répartition de /x est hôldérienne d'exposant (5 et M 2ttQ~2+4£u convient.
Pour tout r > 0 nous obtenons

\ß(u)\ <C r +A(r/M)(l + m2Mr~3)

r\28 —2+4er 1 — ô />ol+26e \«r+,w+^^(^r+|î).
Nous choisissons Q de façon à égaliser les deux termes de l'estimation de

ra2, ce qui revient à prendre Q2+Aô de l'ordre de u ; comme nous l'avons
remarqué en effet, nous pouvons, u étant fixé, choisir / kJ0 suffisamment
grand, i.e. k suffisamment grand, pour rendre Q proche de uÄ : il suffit de

prendre

L(2 + 4Ô)amJo-

pour avoir

q2+4ö _ e(amkJ)(2+4S) < ^ < q2+4ôe(<TmJ0)(2+45)

Il en résulte

(16) \fi(u)\< r+ rsus/(l+2S)u~5+
(17) «r r+ r6u-2S*/(i+26)+ u(6-2S2+15S)/(l+26)rS-3

Il reste à optimiser en r < 1. Choisissons-le de façon à égaliser les deux
termes extrêmes qui sont dominants. En ignorant e, cela revient à prendre r
tel que

r _ rö-3u(ö-2ö2)/(l+2ö)

\ ou encore
j
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£-2£2
r — uP avec 77

(4 - 6){l + 26)

ce qui est licite si l'on suppose 5 > 1/2. En reportant dans (17), il vient

^ + U-152^4-5*1+2^)] + unuUe/V+W « uv+*e

car le second terme est négligeable.

Nous avons ainsi établi le théorème 1.4.

7. Une question de Montgomery

Montgomery a posé dans [12] la question suivante (problème 45) :

Existe-t-il un nombre normal à quotients partiels bornés

Définition 7.1. Un nombre x G [0,1) est normal en base q où q est

un entier q > 2 si et seulement si la suite {(fx) est équirépartie modulo 1,

ce qui, via le critère de Weyl, s'écrit:

V k f 0, lim — e{kqnx) 0
N M 1N N

n<N

Le théorème de Borel établit que si q > 2, presque tout nombre (au sens
de la mesure de Lebesgue) est normal en base q. C'est le théorème ergodique
appliqué à la transformation x G [0,1) qx mod 1. Qu'en est-il en restriction
à un sous-ensemble de nombres irrationnels de [0,1) Un outil est le suivant:

THÉORÈME 7.2 (Davenport-Erdôs-LeVeque). Soit (sn) une suite d'entiers
et soit p une mesure de probabilité portée par [0,1) telle que

1
N

SSjqîSl ~ < 00 '
N> 1 m,n=l

pour tout entier k f 0, alors pour ß-presque tout x G [0,1), la suite (snx)

est équirépartie modulo 1.

Démonstration. Fixons k f 0. Notons ^ J2u<n e(ksnx), et

In,1c / \ SN,k{x)\2dp{x). L'hypothèse n'est autre que

E^T<+to> Vfc^o.
N> 1

Nous utilisons un lemme classique sur les séries :
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