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LEMME 5.3. Soit F une fonction C' sur [0,1] bornée en valeur absolue
par 1 et telle que |F'(t)| < M. Notons my = fol |F(t)|2dt. Soit ensuite \ une
mesure de probabilité sur [0, 1] et notons par A(u) le maximum des A[t,t-+u]
pour tout t dans [0,1 — u]. Nous avons alors pour tout r > 0

1
/ |F(®)|d\ < 2r + A(r/M)(1 + myMr—3).
0

Démonstration. Recouvrons [0, 1] par au plus M/r intervalles disjoints
de longueur /M. 1l reste au plus un intervalle de plus petite longueur. Soit
N le nombre de ces intervalles sur lesquels sup|F(¢)| > 2r. En utilisant le
théoreme des accroissements finis, nous constatons que |F(f)| > r sur tous
les intervalles considérés. Par conséquent

r
my 2 erM .

Il vient

1
/ F(H)|d\ < 2r + (N + DAG/M)
0

<2r+ Ar/MYA +mpMr=3)y. O

6. ESTIMATION DE LA TRANSFORMEE DE FOURIER

Nous nous occupons ici du comportement asymptotique de

1
) = / e(ut)du(t)
0

pour |u| grand; nous supposerons, sans rectriction, u positif.
Commengons par rappeler que si x = [0;a;,a5,...] et t = T (x) =
[0;a74+1,...]
Py +tP;_,
Qs+ 1054
_ P, (D
Qr  (Qr+10,-1)Q;

Partons donc de J = kJy fixé: par construction, nous pouvons décomposer
notre mesure g sous la forme

[O;ahaZ)"')aJ_'_t] —

=VUX - XVUXU:I= pp X
M K= Pr X
k
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de sorte que

N & Pf(x)‘l‘fPJ—l(x))
Al = /O / e< B D) )

1
=AF@wm,
ou
P;+tP;_,;
1 — ki el 3
o e /e (QJ + tQJ—lu) ap

a laquelle nous nous proposons d’appliquer les lemmes précédents. Puisque
J est fixé, nous avons

1 —LE £
ﬁQ’ 2 < Qo <OV

avec Q = exp(Jon,(9)); mais, comme Q tend vers l’infini avec J, nous

pouvons le choisir au voisinage d’un nombre fix€ a ’avance, a une constante

multiplicative prés (constante comprise entre exp(Jyoo,,(6)) et son inverse).
Nous commencgons par déduire des lemmes 5.1 et 5.2 une estimation de

my = [, |F(0)|dr.

(11) Q'7* < Q; < QM

LEMME 6.1. Si Q*** > u, nous avons

Q1+266 Q55
\/ﬁ + QZ(S )

Démonstration. En développant le carré, nous obtenons

1 1 * *
P;+tPj_y  Pj+1tP;_,
thdt:///e(( - u) dtdpyd

ou Pj,Q7,... sont des variables indépendantes de P;,Qy,... et identique-
ment distribuées. Notre expression se réécrit :

// ((Q_j B _J> ”) /1 e(£(1)) dt dpy dpy

(-1u  (=Du
(O +1Q5-1)0Qy (Q}f +105_)0;

L’argument f(#) de I’exponentielle admet pour dérivée :

1
/ |F(O)dt <y
0

ou I'on a posé

(12) f@ =
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') — _ -
A ((QJ 0L @+ tQ;_1>2> (=1

soit encore
(Qr+ Q5 + Q-1+ Q5 N(Qr— Q7 +1Qy—1 — OF_1))
Qs+ 1Qr 1) (QF + 107 1)
qui pourra s’écrire g(¢)(at + B) avec:
Qr+Q; +1Qs-1+0j_1)

(Q; +1Q;-1)*(Q5 + 105 _,)?
1 1

= O 110 @ 10 O+ 10, XD + 105

Il nous faut aussi calculer

1@y = (—1u,

g() =

1
h
(Qy +10,-1)*(QF +105_ )

g0 =- 0

ol nous avons posé

207 Q5 +1Q;_1) N 2071(Q7 +107_)
(07 +107_)) - (Qr+10-1)

Nous poursuivons I’estimation de

h(t) - QJ—] + Q;_l +

1
(13) / () dt notée KOs, 01,0 05 y)
0

en discutant selon l’existence ou non d’un point stationnaire pour f, 1.e.
d’un point ¢ € [0,1) tel que f'(f) = 0 ce qui impose Q;_; # OF_,, et
t=—(Q;—07)/(Qr-1—0Qj_1) €10,1).

1) Tout d’abord rappelons (voir (4)) que si Oy = Qj_; et Q; = Q7,
a; = a’ pour tout i < J; les points P;/Q; et P;/Q% sont donc confondus, et
k(Qy,05-1,07,0;_;) =1 d’apres (12) et (13). Compte tenu du lemme 2.1 et
du caractere holdérien de p (proposition 4.1 a)), la contribution de ce terme
' dans le calcul de la transformée de Fourier sera au plus

// w(Qr, Qr-1,07,07_1) dpx dpx
{0/=07,0;-1=0; |}

<[5 - T 2+ ]
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2a) Supposons qu’il y ait un point stationnaire (en particulier Qy_; #
Qj_,); alors le lemme 5.2 donne

Q3>+

N[

En effet, avec les notations du lemme 5.2,

(14) k(Qr, Qr-1,07,07_1) <

9] > a= 70775

et
1g'()] < 10Q711 = p;

I’estimation suit en se rappelant que
ol = [Qr1 — @y |u.

'b) Supposons maintenant plus généralement que 1 < |Q]._1 - Qj_ll < Hy
et I(QJ — ON/(Qr_1 — Qj_l)l < 2: si H décrit les entiers de la forme 2%
entre 1 et Hy, cet ensemble est approximativement la réunion sur j des
ensembles |

P < = Q| <Y, 10— 05 <2]0 - 05y

En posant H = 2,

{H/2<|Qro1— Q5| <H, |0/ — Q51 £2]Qs1 — Q54 }
- {H/ZS ‘Q]—l —Qj—l’ SHv ]QJ—Q.H SQ’H} ’

de sorte que

// dpx dpy
(H/2<|Qr-1— 05, |<H, |Q,—05 |<2|Q;1—05_, |}

< // dpy dpx
{H/2<|P,—P}|<H, |Q;—0F|<2H}

en utilisant I’invariance de la mesure p; par la transformation (ay,...,a;) —
(ay,...,a1) (proposition 4.1 b)) ainsi que (2) et (3).

Or les hypotheses H/2 < |P;— Pj| < H, |Q; — Q7| < 2H impliquent
clairement, :
P, Py <'PJ""P}<|+|QJ—Q>JK|P>JK H

0 O~ o 0,0, orE’
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donc, si nous conservons dans ce cas les estimations 14 de s obtenues dans
le cas a) d’existence d’un point stationnaire, nous obtenons une contribution
de 1’ordre de

// &(QJ7QJ—I;Q}k7Q}k;1) dpkdpk
{H/2§|Q1_1~Qj_1|§H, |QJ—Q}k §2|QJ—1—Q;‘_1|}

Q%—i—23€
< / / \ dprdp
vHue JJ 5 -g ‘SH/Q
Q%+23E

VHu

en se souvenant de la propriété holdérienne de p (proposition 4.1 a)).
En sommant sur j, nous trouvons pour 1’ensemble

{1< ‘Qj_l — Q}‘_ll < Hyp, |05 — Q7| < 2iQJ—l - Q7—1|}

une contribution totale d’au plus

<

(H/Q)°

3

=423¢

2 5—1/2
L 2t

c) Si ‘Q_]_l — Q}“_li > Hy cette fois, le méme lemme fournit une
contribution de 1’ordre de
032 /\/Tiou
3a) Si Qj1 #QF et [(Qr—0))/(Q—1 —Q;_)| >2,il 0’y a pas

de point stationnaire et nous sommes dans les conditions d’application du
lemme 5.1 qui nous donne la majoration

Q3+26E
10/ = Q5|+ |Qs—1 = QF_ Du”

En effet il résulte des calculs précédents, en reprenant la minoration de
9@, que

(15) K’(QJ?QJ-l)Q.>}<>Qj;—-1)<<

@1 = 18llg®] > w00, — 05| 1

et en dérivant f/(¢) = (ar + £)g(t) nous déduisons ;
F®) < lallg®] + (ol + |8D|g ®) |

|

Q70 = Qflu+ Q70 — Q5| + |01 — Q5 u |
<O, - Q51+ |Qr1 — Q5 u,

d’ou la majoration annoncée.
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Le cas IQJ 1 — 07 1\ > Hy ayant été pris en compte a I’étape
précédente, il suffit de considérer I’ensemble 1 < [QJ 1 — Q05 1| < Hy,
I(QJ - 0N/(Qr-1 — QJ—1)‘ > 2 et la discussion se poursuit ainsi:

b) Supposons 1 < IQ_]_l — Q’J"_1| < Hy et |Q;— Q3| > 2Hy; la
majoration du lemme 5.1 nous donne une contribution de

Q3+265
ng

c) Supposons |Q; — QF| < 2Hp (ce qui implique 1 < lQ]_l — Q}‘_1] <
Hy); cet ensemble se décrit comme la réunion sur j, avec 1 <2 < Hy, des
ensembles

{|01 = 0| <2, 2 <0, - Q)| <21}

Utilisons alors les estimations (15) de «, établies dans le cas a) sans point
stationnaire, nous obtenons par des arguments similaires

// K;(QJ) QJ—17 Q;) Q;_l) dpkdpk
{1<|Qs—1—0;_,|<H, HL|0,-05|<2H)

Q3+266
< / / dpidpy
{1<|p,—pPr|<H, H<|Q, 0rl<

Q3+266
o dprdpr
——’ <H/Q
Q3—|—268
(H/0) .
En sommant sur j, nous trouvons pour 1’ensemble .

{1<10/-1— Q51| <Ho, |Q/— 051 >2|0s-1 — 0F 4|}
une contribution totale d’au plus
(O3+26e

Il s’agit en fait essentiellement du carré de la quantité¢ précédente. Comme
notre intégrale est inférieure 4 1, nous pouvons négliger ce terme (aux (Q%%¢

pres).
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4) Enfin la derniére contribution qu’il faille ajouter vient du cas Qy_1 =
Q;_, mais Q; # Q3 ; il se traite comme le cas 3) précédent et fournit un
terme majorant du méme ordre de grandeur.

Nous sommes en mesure de terminer la preuve du lemme : le choix optimal
dans I’estimation est donné par Hy = Q; en négligeant la contribution des
cas 3) et 4), cela nous donne

Q1-|—26e Q68

1
mz_—_/o IF(t)]de <N \/ﬁ -+ Q25

comme attendu. L]

Pour estimer [(u) = fol F(t)du(t), nous pouvons maintenant utiliser le
lemme 5.3 avec la fonction F' et la mesure p : par construction, la fonction
de répartition de y est holdérienne d’exposant § et M = 2rQ~>T*€u convient.
Pour tout r > 0 nous obtenons

| W) < 7+ Ar/M)(1 + myMr—>)

Q25—2—|—4€u1—6 Ql—{—265 Qés

+55%)-
Nous choisissons O de fagon a égaliser les deux termes de I’estimation de
my, ce qui revient a prendre Q7% de I’ordre de u; comme nous I’avons
remarqué en effet, nous pouvons, u étant fixé, choisir J = kJp suffisamment

grand, i.e. k suffisamment grand, pour rendre Q proche de u™% il suffit de
prendre

<L 4+ r5Q26u—6 +

_ logu
LR +46)0,J0

pour avoir
Q2+45 — (omk])(24-46) <u< Q2+45e(amfo)(2+45) _

I1 en résulte

(16)  |a@)| < r4 rou®/0+20y =0 4 ,8/(+28),1-6 ,6-3 ) (=6+13e)/(1+26)
2
(17) & 74 POy 20420 L (6-287+15)/(1428) .63
Il reste a optimiser en r < 1. Choisissons-le de facon a égaliser les deux.
termes extrémes qui sont dominants. En ignorant ¢, cela revient 4 prendre r

tel que
2
r— p9—3,(6-26%/(1+26)

ou encore
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§ —26°
(4 —0)(1+2))
ce qui est licite si I’on suppose § > 1/2. En reportant dans (17), il vient

r=u" avec n=

2
)] <€ U 4 5T/ E=DAH2] o 152/(1428) o yn8e
car le second terme est négligeable.

Nous avons ainsi établi le théoreme 1.4.

7. UNE QUESTION DE MONTGOMERY
Montgomery a posé dans [12] la question suivante (probleme 45):
Existe-t-il un nombre normal a quotients partiels bornés ?

DEFINITION 7.1. Un nombre x € [0,1) est normal en base g oll g est
un entier g > 2 si et seulement si la suite (¢"x) est équirépartiec modulo 1,
ce qui, via le critere de Weyl, s’écrit:

.1 fos
Vk#0, 11}511N};ve(kq x)=0.

Le théoreme de Borel €tablit que si g > 2, presque tout nombre (au sens
de la mesure de Lebesgue) est normal en base g. C’est le théoreme ergodique
appliqué a la transformation x € [0,1) — gx mod 1. Qu’en est-il en restriction
a un sous-ensemble de nombres irrationnels de [0, 1) ? Un outil est le suivant:

THEOREME 7.2 (Davenport-Erdés-LeVeque). Soit (s,) une suite d’entiers
et soit . une mesure de probabilité portée par [0,1) telle que

N
Z % Z ﬂ(k(sn - Sm)) < 00,
1

N>1 m,n=
pour tout entier k # 0, alors pour p-presque tout x € [0,1), la suite (s,x)
est équirépartie modulo 1.

Démonstration. Fixons k # 0. Notons Syi(x) = 5>,y elks.x), et
Iy = f |SN,k(x)|2d,u(x). L’hypothese n’est autre que

Vi .
Z]i\;ﬁ<+oo, Vk+£0.

N>1
Nous utilisons un lemme classique sur les séries:
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