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Simplicial gerbes need not admit connections in general. A sufficient
condition for the existence of a connection is that the §-cohomology of the
double complex QF(M,) vanishes in bidegrees (1,2) and (2, 1). In particular,
this holds true for bundle gerbes: Indeed it is shown in [24] that for any
surjective submersion 7: X — M the sequence

Q1) 00— QM) " R0 =2 QFx®y 2 ok xBly s ..

is exact, so the ¢-cohomology vanishes in all degrees.

Thus, every bundle gerbe G = (X,L,t) over a manifold M (and in
particular every Chatterjee-Hitchin gerbe) admits a connection. One defines the
3-curvature n € Q*(M) of the bundle gerbe connection by 7*n = dB € kerd.
It can be shown that its cohomology class is the image of the Dixmier-Douady
class [G] under the map H>(M,Z) — H>(M,R). Similarly, if G admits a
pseudo-line bundle £ = (E,s), one can always choose a pseudo-line bundle
connection VZ. The difference - curv(VZ) — B is §-closed and one defines

27

the error 2-form of this connection by
1
m*w = — curv(VF) — B.
27

It is clear from the definition that dw +n = 0.

REMARK 2.7. There is a notion of holonomy around surfaces for gerbe
connections (cf. Hitchin [18] and Murray [24]), and in fact gerbe connections
can be defined in terms of their holonomy (see Mackaay-Picken [20]).

2.4 EQUIVARIANT BUNDLE GERBES

Suppose G 1is a Lie group acting on X and on M, and that 7: X — M is
a G-equivariant surjective submersion. Then G acts on all fiber products
X1, We will say that a bundle gerbe G = (X,L,1) is G-equivariant,
if L i1s a G-equivariant line bundle and ¢ is a G-invariant section. An
equivariant bundle gerbe defines a gerbe over the Borel construction!)
X = EG xg X — Mg = EG xg M, hence has an equivariant Dixmier-
Douady class in H>(Mg,Z) = Hé(M ,Z). Similarly, we say that a pseudo-line
bundle (E,s) for (X,L,t) is equivariant, provided E carries a G-action and
s 1S an invariant section.

') We have not discussed bundle gerbes over infinite-dimensional spaces such as M. Recall
however [4] that the classifying bundle EG — BG may be approximated by finite-dimensional

principal bundles, and that equivariant cohomology groups of a given degree may be computed
using such finite dimensional approximations.
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REMARK 2.8. As pointed out in Mathai-Stevenson [21], this notion of
equivariant bundle gerbe is sometimes ’really too strong’: For instance, if
X =[] U,, for an open cover U = {U,,a € A}, a G-action on X would
amount to the cover being G-invariant. Brylinski [9] on the other hand gives
a definition of equivariant Chatterjee-Hitchin gerbes that does not require
invariance of the cover.

To define equivariant connections and curvature, we will need some notions
from equivariant de Rham theory [15]. Recall that for a compact group G, the
equivariant cohomology Hy.(M,R) may be computed from Cartan’s complex of
equivariant differential forms €f.(M), consisting of G-equivariant polynomial
maps «: g — 2(M). The grading is the sum of the differential form degree
and twice the polynomial degree, and the differential reads

(dg @) () = da(§) — Ubm)(©),

where &y = %|t:0 exp(—t£) 1s the generating vector field corresponding to
¢ € g. Given a G-equivariant connection V> on an equivariant line bundle, one
defines [3, Chapter 7] a dg-closed equivariant curvature curvg(V%) € Qé(M).

A equivariant connection on a G-equivariant bundle gerbe (X,L,7) over
M is a pair (VE,Bg), where V! is an invariant connection and Bg € Qé(X)
an equivariant 2-form, such that §V*¢ = 0 and 6Bg = 5- curvg(V5). Its
equivariant 3-curvature ng € Q%L(M) is defined by 7*ng = dg Bg. Given
an invariant pseudo-line bundle connection VZ on a equivariant pseudo-line
bundle (E,s), one defines the equivariant error 2-form wg by

*we = — curvg(VE) — Bg.
27l

Clearly, dgwg + n¢g = 0.

3. GERBES FROM PRINCIPAL BUNDLES

The following well-known example [7], [24] of a gerbe will be important
for our construction of the basic gerbe over G. Suppose U(1) — K > K is
- a central extension, and (I', 7) the corresponding simplicial gerbe over B.K.
Given a principal K -bundle 7: P — B, one constructs a bundle gerbe (P, L,1),
sometimes called the lifting bundle gerbe. Observe that

E.,P =P xxE,K,
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