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384 L.H. KAUFFMAN AND S. LAMBROPOULOU

In Figure 21 we illustrate one example of a cut that is not rational. This is
a possible cut made in the middle of the representative diagram N(T'). Here
we see that if 77 is the tangle obtained from this cut, so that N(T') = K, then
D(T") is a connected sum of two non-trivial knots. Hence the denominator
K' = D(T’) is not prime. Since we know that both the numerator and the
denominator of a rational tangle are prime (see [5], p.91 or [19], Chapter 4,
pp. 32-40), it follows that 7" is not a rational tangle. Clearly the above
argument is generic. It is not hard to see by enumeration that all possible
cuts with the exception of the ones we have described will not give rise to
rational tangles. We omit the enumeration of these cases.

This completes the proof that all of the rational tangles that close to a
given standard rational knot diagram are arithmetically equivalent.
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FIGURE 22
Standard, special, palindrome and special palindrome cuts

In Figure 22 we illustrate on a representative rational knot in 3-strand-
braid form all the cuts that exhibit that knot as a closure of a rational tangle.
Each pair of points is marked with the same number. ]

REMARK 4. It follows from the above analysis that if 7" is a rational tangle
in twist form, which is isotopic to the standard form [[a1], [az2], . . ., [a.]], then
all arithmetically equivalent rational tangles can arise by any cut of the above
types either on the crossings that add up to the subtangle [a;] or on the
crossings of the subtangle [a,].

3.2 THE FLYPES

Diagrams for knots and links are represented on the surface of the two-
sphere, S, and then notationally on a plane for purposes of illustration.
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Let K = N(T) be a rational link diagram with 7 a rational tangle in
twist form. By an appropriate sequence of flypes (recall Definition 1) we
may assume, without loss of generality, that T is alternating and in continued
fraction form, i.e. T is of the form T = [[a1], [a2],...,[a,]] with the a;’s
all positive or all negative. From the ambiguity of the first crossing of a
rational tangle we may assume that n is odd. Moreover, from the analysis
of the bottom twists in the previous subsection we may assume that 7" is in
reduced form. Then the numerator K = N(T) will be a reduced alternating
knot diagram. This follows from the primality of K.

Let K and K’ be two isotopic, reduced, alternating rational knot diagrams.
By the Tait Conjecture they will differ by a finite sequence of flypes. In
considering how rational knots can be cut open to produce rational tangles,
we will examine how the cuts are affected by flyping. We analyze all possible
flypes to prove that it is sufficient to consider the cuts on a single alternating
reduced diagram for a given rational knot K. Hence the proof will be complete
at that point. We need first two definitions and an observation about flypes.

DEFINITION 3. We shall call region of a flype the part of the knot diagram
that contains precisely the subtangle and the crossing that participate in the
flype. The region of a flype can be enclosed by a simple closed curve on the
plane that intersects the tangle in four points.

FIGURE 23
Decomposing into N([£1] + R)

DEFINITION 4. A pancake flip of a knot diagram in the plane is an
isotopy move that rotates the diagram by 180° in space around a horizontal
or vertical axis on its plane and then it replaces it on the plane. Note that
any knot diagram in $? can be regarded as a knot diagram in a plane.
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In fact, the pancake flip is actually obtained by flypes so long as we allow
as background moves isotopies of the diagram in S?. To see this, note as
in Figure 23 that we can assume without loss of generality that the diagram
in question is of the form N([Z1] + R) for some tangle R not necessarily
rational. (Isolate one crossing at the ‘outer edge’ of the diagram in the plane
and decompose the diagram into this crossing and a complementary tangle,
as shown in Figure 23.) In order to place the diagram in this form we only
need to use isotopies of the diagram in the plane.

S2-isoto y lanar
R p p
R isotopy R
pancake 2 .
J/ flip l/S isotopy
S2- isotopy B flype R
B < <— '
FIGURE 24
Pancake flip

Note now, as in Figure 24, that the pancake flip applied to N([£1] 4+ R)
yields a diagram that can be obtained by a combination of a planar isotopy,
S?-isotopies and a flype. (By an S?-isotopy we mean the sliding of an arc
around the back of the sphere.) This is valid for R any 2-tangle. We will use
this remark in our study of rational knots and links.

We continue with a general remark about the form of a.flype in any
knot or link in S?. View Figure 25. First look at parts A and B of this
figure. Diagram A is shown as a composition of a crossing and two tangles
P and Q. Part B is obtained from a flype of part A, where the flype
is applied to the crossing in conjunction with the tangle P. This is the
general pattern of the application of a flype. The flype is applied to a
composition of a crossing with a tangle, while the rest of the diagram can
be regarded as contained within a second tangle that is left fixed under the
flyping. o
Now look at diagrams C and D. Diagram D is obtained by a flype using
QO and a crossing on diagram C. But diagram C is isotopic by a planar isotopy
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FIGURE 25
The complementary flype

to diagram A, and diagrams B and D are related by a pancake flip (combined
with an isotopy that swings two arcs around S$?). Thus we see that:

Up to a pancake flip one can choose to keep either of the tangles P or
Q fixed in performing a flype.

Let now K = N(T) and K’ = N(T") be two reduced alternating rational
knot diagrams that differ by a flype. The rational tangles 7 and T are
in reduced alternating twist form and without loss of generality 7" may be
assumed to be in continued fraction form. Then, recall from Section 2 that
the region of the flype on K can either include a rational truncation of T or
some crossings of a subtangle [ag;], see Figure 26. In the first case the two
subtangles into which K decomposes are both rational and each will be called
the complementary tangle of the other. In the second case the flype has really
trivial effect and the complementary tangle is not rational, unless i = 1 or n.

i o o

[J——

\a
L J\“#w )

FIGURE 26
Flypes of rational knots
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- For the cutpoints of T on K = N(T) there are three possibilities :

1. they are outside the region of the flype,

2. they are inside the flyped subtangle,

3. they are inside the region of the flype and outside the flyped subtangle.

If the cutpoints are outside the region of the flype, then the flype is taking
place inside the tangle 7 and so there is nothing to check, since the new
tangle is isotopic and thus arithmetically equivalent to 7.

We concentrate now on the first case of the region of a flype. If the
cutpoints are inside the flyped subtangle then, by Figure 25, this flype can
be seen as a flype of the complementary tangle followed by a pancake flip.
The region of the flype of the complementary tangle does not contain the cut
points, so it is a rational flype that isotopes the tangle to itself. The pancake
flip also does not affect the arithmetic, because its effect on the level of the
tangle T 1is simply a horizontal or a vertical flip, and we know that a flipped
rational tangle is isotopic to itself.

If the region of the flype encircles a number of crossings of some [g]
then the cutpoints cannot lie in the region, unless i = 1 or n. If the cutpoints
do not lie in the region of the flype, there is nothing to check. If they do, then
the complementary tangle is isotopic to 7', and the pancake flip produces an
isotopic tangle.

Finally, if the cutpoints are inside the region of the flype and outside the
flyped subtangle, i.e. they are near the crossing of the flype, then there are
three cases to check. These are illustrated in Figure 27.

(i) ” flype a
Xl = D
(ii) Vol = flype ~
, R _— B N

e flype @
(iii) :X - npe 5

FIGURE 27

Flype and cut interaction

A

In each of these cases the flype is illustrated with respect to a crossing
and a tangle R that is a subtangle of the link K = N(T'). Cases (i) and
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(ii) are taken care of by the trick of the complementary flype. Namely, as in
Figure 25, we transfer the crossing of the flype around S%. Using this crossing
we do a tangle flype of the complementary tangle, then we do a horizontal
pancake flip and finally an S*-isotopy, to end up with the right-hand sides of
Figure 27.

In case (iii) we note that after the flype the position of the cut points is
outside the region of a flyping move that can be performed on the diagram
K' to return to the original diagram K, see Figure 28. This means that
after performing the return flype the tangle T’ is isotopic to the tangle 7.
One can now observe that if the original cut produces a rational tangle, then
the cut after the returned flype also produces a rational tangle, and this is
arithmetically equivalent to the tangle 7. More precisely, the tangle 7" is the
result of a special cut on N(T).

(iii)“\{: flype = »~~ return Va
- R — 15 >\ Me}:}\ R

N(T) N(T") N(T)

FIGURE 28
Flype and special cut

With the above argument we conclude the proof of the main direction of
Theorem 2. From our analysis it follows that:

If K = N(T) is a rational knot diagram with T a rational tangle then, up
to bottom twists, any other rational tangle that closes to this knot is available
as a cut on the given diagram.

We will now show the converse. We wish to show that if two rational
tangles are arithmetically equivalent, then their numerators are isotopic knots.
Let Ty, T, be rational tangles with F(T}) = g and F(T) = 5, with |p| > |q]
and |p| > |¢'|, and assume first g¢' =1 mod p. If ’ql = lai,a,...,a,], with
n odd, and % = [a@n,an—1,...,a1] is the corresponding palindrome continued
fraction, then it follows from the Palindrome Theorem that ¢4’ = 1 mod p.

Furthermore, it follows by induction that in a product of the form
1/
M(a)M(a) - - M(ay) = (’; ! )

we have that p > g and p > ¢’, ¢ > u and ¢” > u whenever
ai,as,...,a, are positive integers. (With the exception in the case of
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M(1) where the first two inequalities are replaced by equalities.) The
induction step involves multiplying a matrix in the above form by one
more matrix M(a), and observing that the inequalities persist in the product
martrix. ‘

Hence, in our discussion we can conclude that |p| > |¢”|. Since |p| > |¢/|
and |p| > |q¢"|, it follows that ¢ = ¢”, since they are both reduced
residue solutions of a mod p equation with a unique solution. Hence
lan, an_1,...,a1] = %, and, by the uniqueness of the canonical form for
rational tangles, 7, has to be:

TZ — [[an]7 [an—-l]a cey [al]]'-

For these tangles we know that N(T}) = N(T,). Let now 75 be another
rational tangle with fraction

p _ 1
q +kp %+k

By the Conway Theorem, this is the fraction of the rational tangle

1 1
1 =1Tp %x —.
‘Tz-i'[k]

Ld

Hence we have (recall the analysis of the bottom twists):

1
N( ) ~ N(T?).
7, + k]
Finally, let F(S;) = %’ and F(S;) = quﬁ. Then
p 1
qg+kp L4k’

which is the fraction of the rational tangle

11
1
§+[k]

—Sl*—.

[£]

Thus
N(S1) ~ N(S2) .

The proof of Theorem 2 is now complete. [




ON THE CLASSIFICATION OF RATIONAL KNOTS 391
We close the section with two remarks.

REMARK 5. In the above discussion about flypes we used the fact that
the tangles and flyping tangles involved were rational. One can consider the
question of arbitrary alternating tangles T that close to form links isotopic
to a given alternating diagram K. Our analysis of cuts occurring before and
after a flype goes through to show that for every alternating tangle T, that
closes to a diagram isotopic to a given alternating diagram K, there is a cut
on the diagram K that produces a tangle that is arithmetically equivalent to
T. Thus it makes sense to consider the collection of tangles that close to an
arbitrary alternating link up to this arithmetic equivalence. In the general case
of alternating links this shows that on a given diagram of the alternating link
we can consider all cuts that produce alternating tangles and thereby obtain
all such tangles, up to a certain arithmetical equivalence, that close to links
1sotopic to K.

Even for rational links there can be more than one equivalence class
of such tangles. For example, N(1/[3] + 1/[3]) = N([—6]) and F(1/[3] +
1/[3]) = 2/3 while F([—6]) = —6. Since these fractions have different
numerators their tangles (one of which is not rational) lie in different
equivalence classes. These remarks lead us to consider the set of arithmetical
equivalence classes of altenating tangles that close to a given alternating
link and to search for an analogue of Schubert’s Theorem in this general
setting.

REMARK 6. DNA supercoils, replicates and recombines with the help
of certain enzymes. Sife-specific recombination is one of the ways nature
alters the genetic code of an organism, either by moving a block of DNA
to another position on the molecule or by integrating a block of alien DNA
into a host genome. In [7] it was made possible for the first time to see
knotted DNA in an electron micrograph with sufficient resolution to actually
identify the topological type of these knots and links. It was possible to design
an experiment involving successive DNA recombinations and to examine the
topology of the products. In [7] the knotted DNA produced by such successive
recombinations was consistent with the hypothesis that all recombinations were
of the type of a positive half twist as in [+1]. Then D.W. Sumners and
C. Ernst [9] proposed a tangle model for successive DNA recombinations and
showed, in the case of the experiments in question, that there was no other
topological possibility for the recombination mechanism than the positive half
twist [+1]. Their work depends essentially on the classification theorem for
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rational knots. This constitutes a unique use of topological mathematics as a
theoretical underpinning for a problem in molecular biology.

4. RATIONAL KNOTS AND THEIR MIRROR IMAGES

In this section we give an application of Theorem 2. An unoriented knot
or link K 1is said to be achiral if it is topologically equivalent to its mirror
image —K. If a link is not equivalent to its mirror image then it is said
be chiral. One then can speak of the chirality of a given knot or link,
meaning whether it is chiral or achiral. Chirality plays an important role in
the applications of knot theory to chemistry and molecular biology. In [8] the
authors find an explicit formula for the number of achiral rational knots among
all rational knots with n crossings. It is interesting to use the classification
of rational knots and links to determine their chirality. Indeed, we have the
following well-known result (for example see [35] and [16], p.24, Exercise
2.1.4; compare also with [31]):

THEOREM 5. Let K = N(T) be an unoriented rational knot or link,
presented as the numerator of a rational tangle T. Suppose that F(T) =
p/q with p and q relatively prime. Then K is achiral if and only if
g¢> = —1 mod p. It follows that the tangle T has to be of the form

[[al]a[aZ]a"'7[ak]7[ak]a'“;[aQ]a[al]] fO}" any im‘egers agy ..., k.

Note that in this description we are using a representation of the tangle
with an even number of terms. The leftmost twists [a;] are horizontal, thus
lp| > |g|. The rightmost starting twists are then vertical.

Proof. With —T the mirror image of the tangle 7, we have that
—~K =N(-T) and F(-T) =p/(—q). If K is isotopic to —K, it follows from
the classification theorem for rational knots that either g(—g) =1 mod p or
g = —q mod p. Without loss of generality we can assume that 0 < g < p.
Hence 2qg is not divisible by p and therefore it is not the case that g = —¢q
mod p. Hence g*> = —1 mod p.

Conversely, if ¢> = —1 mod p, then it follows from the Palindrome
Theorem that the continued fraction expansion of p/q has to be palindromic
with an even number of terms. To see this, let p/q = [c1,...,¢c,] with n
even, and let p'/q’ = [cy,...,c1]. The Palindrome theorem tells us that
p’ = p and that ¢’ = —1 mod p. Thus we have that both g and ¢ satisfy
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