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5. SPLITTING OF THE EXTENSION
ASSOCIATED TO A NONCONNECTED COMPACT LIE GROUP

Let G still denote a compact Lie group with a nonabelian connected
component; we also assume the other notations introduced previously. In this
final section, we make a few observations on the following problem: when
18 the natural extension associated to G split, i.e. when is G isomorphic
to a semidirect product G, x I' ? Our aim is to relate this problem to the
rest of this work. For a deeper analysis one should consult Chapter 6 in the
book by Hofmann and Morris [14]. We start with a structure theorem for
compact Lie groups based on centralizers of principal subgroups, similar to
the “Sandwich Theorem for compact Lie groups” (see [14], Corollary 6.75,
p.272). This theorem shows that any compact Lie group is “sandwiched” in
between two semidirect products closely related to it. We then recall a theorem
of de Siebenthal and compare, in some particular cases, the question of the
splitting of the extension associated to G to that of the extensions associated
to the normalizer N of a maximal torus and to the centralizer Q of a principal
diagonal, both introduced in Section 2. As an application of the “Sandwich”
Theorem, the final proposition presents a “minimal” compact Lie group G
such that the associated extension is not split.

Let G, denote the adjoint group G,/Z, ; it is well-known that the center
of G, is trivial.

THEOREM 5.1. Let G be a compact Lie group with a nonabelian connected
component. Then there exist two surjective homomorphisms

Gi=Go,xZ 5% G 5 G=G/Zy2GyxT,
(90,2) > o' Z
where the centralizer Z of a fixed principal subgroup acts on G, by
conjugation, and where m, is the canonical projection corresponding to the

normal subgroup Z, of G.
For the kernels, we have kerm| = Z, and kermy, = Z,; in particular

G=(GoxZ))Zy and G/Zy=2G,xT.

Proof As G, is centerless, G must be isomorphic to G, x I' by the
proof of Proposition 3.1. The other assertions about 7, are clear.

The map m is well-defined and surjective (because Z intersects every
component of G). Straightforward computations show that it is a homomor-
phism and that kerm; =2 Z,. []
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REMARK 5.2. 1) The component of the identity of G; is equal to G, if
and only if G, 1s semisimple.

2) The present version of the “Sandwich” Theorem has the advantage of
being more explicit than the one in [14] (the result therein is an existence
theorem). Its drawbacks are the fact that Z is not finite if G, is not semisimple,
and that it obviously makes no sense for compact Lie groups with an abelian
connected component.

3) Given a homomorphism ¢: I' — Out(G,), and an extension Z, SHEST
for which the action coincides with the “restriction” ¢, there is a more direct
way than the cohomological one to recover the corresponding compact Lie
group G, 1.e. the one that fits into the commutative diagram

L1

Let us define the composition : E “ré Out(G,) > Aut(G,), where s 1is
as in Theorem 2.4. Then by Bourbaki (see [4], Lemme 7, pp.210-211), we
have

G = (G, ><IEE)/AZO>

where AZ, is the image of the injection z, — (z5 !, u(z,)). Taking E = Z,
this gives another proof of the assertions concerning 7; in Theorem 5.1.

Using Cartan subgroups (in the sense of Segal [22], i.e. those Adams called
“SS subgroups” in honour of Segal and de Siebenthal [1]), de Siebenthal gave
some explicit sufficient conditions for the splitting of the extension associated
to G ([9], Théoreme p.74).

THEOREM 5.3 (de Siebenthal). Let G be a compact Lie group with G,
simply connected, or of adjoint type (i.e. Z, is trivial). If T = 7(G) is cyclic
then G is a semidirect product, i.e. G= G, x T.

A relationship with the splitting of the extension associated to the
normalizer of a maximal torus N in G is given in the next proposition.

PROPOSITION 5.4. If the group of components 1" of G is nilpotent, then

the extension G, — G — T is split if and only if the extension No - N —»T
is split.




82 J.-F. HAMMERLI

Proof. The “if” part is clear. Conversely, let s: I' — G be a section.
By a result in Bourbaki (see [5], Corollaire 4, p.49), any nilpotent subgroup
of a compact Lie group is contained in the normalizer of some maximal
torus. Therefore, if needed after conjugation by an element in G,, we have
s(I') C N, and we can conclude that the extension associated to N is split. [

For an extended maximal torus Q, the extensions can be related as follows.

PROPOSITION 5.5. If the group of components " of G is cyclic, then the
extension G, — G — I is split if and only if the extension T — Q —» I is
split.

Proof. The proposition readily follows from the fact that the conjugates
of Q cover G. [ ’

REMARK 5.6. This latter proposition fails in general. An obstruction to
the splitting of the extension associated to the extended maximal torus Q can
be found in a paper by Oliver; this obstruction involves the representation
ring of G and its relation with the family of all p-toral subgroups of G (see
[19], Corollary 3.11). In particular, Oliver constructs a compact Lie group
G =SUQR) % (Z/2 xZ/2 x Z/3) such that the extension corresponding to the
extended maximal torus Q is not split ([19], pp.376-377).

We conclude with the promised example.

PROPOSITION 5.7. Let Dy = (r,s|r* =5 =e,srs"! =r~1) be a pre-
sentation of the dihedral group. Then the quotient

G = (SU(2) x Dg)/AZ/2,

where AZ/2 denotes the central subgroup generated by (—1,r?), is a compact
Lie group with G, 2 SUQR) and T' =2 Z/2 X Z/2, the 4-group of Klein. The
associated extension

SUR) — G —-»Z/2xZ/2

is not split. Among the extensions associated to a compact Lie group with
a nonabelian connected component, it is a minimal one having the property
of being non-split, in the sense that the rank of the connected component
and the size of the group of components are minimal. Moreover replacing the
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connected component by SO(3) (i.e. by “any” group of the same rank), or
the group of components by Z./4 (i.e. by “any” group of the same size), will
force the extension to be split.

Proof. The assertions about the connected component and the group of
components are clear. Let us show that the extension associated to G is not
split. Let us denote [g,7] € G the image of (g,v) € SU(2) x Dg under the
canonical projection. Let S! denote the standard maximal torus in SU(2), and
let N denote its normalizer in G. We have

N={[tel:t €S} {[jt,e]:t € S} I {[t,r]:t € S'} L {[jt,r]:t€S"}
I {[t,s]:t€S"} 1L {[jt,s]:1 € S'} I {[t,rs]:t € S'} L {[jt,rs]:1€S'}.

By contradiction, suppose that the extension associated to G is split, 1.e. there
exists a section. As Z/2 x Z/2 is abelian, thus nilpotent, we deduce, by
Proposition 5.4, that the extension associated to N is also split. We want
to show that this is not possible by considering the elements of order 2 in
N. For n = 0,1, a straightforward calculation shows that in the component
corresponding to r"s, an element [z, 7"s] is of order 2 if and only if f = +1,
and that the sub-component {[jt, rs]:t e Sl} does not contain any element
of order 2. Two of the three non-trivial elements in I' = Z/2 x Z/2 must thus
be mapped by the section to [£1,s] and [£1,rs]. Therefore, as the section
1s a homomorphism, the image of the third non-trivial element is

[Zl:la rs] - [:t17S] — [ila r] )

which is not of order 2. A contradiction that shows that the extension associated
to G 1is not split.

The property of minimality follows by Theorem 5.3, and by the fact that any
extension with SO(3) as normal subgroup is a direct product (because SO(3)
is complete, i.e. centerless and with trivial outer automorphism group). [
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