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faut-il trouver des exemples. Nous expliquerons que ces exemples doivent
étre cherchés sur des variétés dont la dimension de Kodaira est négative et
montrerons la proposition suivante :

PROPOSITION 1.2. Soit M une variété compacte kihlérienne dont la
dimension de Kodaira est positive ou nulle. Soit f un endomorphisme de
M non inversible. S’il existe une classe de Kdhler (o] telle que f*[c] soit
proportionnelle & [a] alors M est revétue par un tore et f est revétue par
une transformation affine de ce tore.

De surcroit, modulo des conjectures classiques sur les variétés kahlériennes,
il est possible de classer les endomorphismes non inversibles qui ne préservent
pas de fibration lorsque la dimension de Kodaira est positive ou nulle.

1.4 PLAN DU TEXTE. La partie 2 dresse un panorama succinct des idées
de base utiles pour comprendre les variétés complexes compactes possédant
un endomorphisme de degré plus grand que 1. Plusieurs points de vue ne
sont pas abordés, notamment la réduction algébrique, le quotient rationnel
et les arguments relatifs a la structure des groupes fondamentaux de variét€s
kahlériennes, mais des idées proches sont exploitées dans les parties suivantes.

Les parties 3 a 6 concernent la structure des variétés homogenes munies
d’un endomorphisme non inversible. La derniere partie poursuit la partie 2 et
démontre la proposition 1.2. La partie 2 peut donc jouer le le d’introduction
ou de motivation pour les parties 3 a 6, ou pour la partie 7. Puisqu’elle ne
présente que des résultats tres classiques, elle peut étre ignorée par le lecteur
averti.

1.5 REMERCIEMENTS. Je tiens a remercier A. Huckleberry pour son
accueil a I’Université de Bochum et les discussions que nous avons eues autour
du sujet abord€ ici. Les lectures attentives et les remarques des rapporteurs
et des rédacteurs de L’Enseignement Mathématique ont considérablement
amélioré la présentation de cet article. Je les en remercie.

2. ENDOMORPHISMES DES VARIETES COMPLEXES COMPACTES

Dans cette premiere partic nous dressons un panorama rapide des résultats
de base permettant d’aborder la question centrale étudiée dans cet article,
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a savoir: quelles sont les variétés complexes compactes qui possedent un
endomorphisme holomorphe de degré topologique strictement supérieur a 1 ?

2.1 DIMENSION DE KODAIRA

La dimension de Kodaira d’une variété complexe compacte M est un
nombre entier kod(M), éventuellement égal a —oco, qui peut prendre les
valeurs —00,0,1,2,...,dimc(M). Elle est définie de la maniere suivante.

Si L est un fibré en droites holomorphe sur M, H (M ,L) désignera le
C-espace vectoriel constitué des sections holomorphes globales de L. La
dimension de ce C-espace vectoriel est finie.

Soit x un point de M et L, la fibre de L en ce point. L’évaluation des sec-
tions de L au point x détermine une application linéaire 6y : H(M,L) — L.
Cette application est identiquement nulle lorsque toutes les sections globales
de L s’annulent en x; on dit alors que x est un point base de L. Une fois
fixé un isomorphisme de L, avec la droite vectorielle C, 6;  s’interprete
comme une forme linéaire et celle-ci ne dépend du choix de I’'isomorphisme
C ~ L, que par un facteur multiplicatif. En tout point x de M qui n’est pas
un point base de L, on obtient ainsi un élément [0; ] de I’espace projectif
P(H®(M, L)*). Pour les fibrés en droites qui possedent au moins une section
non nulle, ce procédé détermine une application méromorphe

(1) Or: M -—-» P(H'(M, L)*)

dont les points d’indétermination sont contenus dans les points bases de L.

Pour chaque entier strictement positif k, cette construction peut €tre répétée
en remplacant L par la puissance tensorielle Z®*. La dimension de Kodaira-
Iitaka de L est alors définie comme le maximum des dimensions des images

Orex(M) :

(2) kod(M,L) = max {dim¢ (Orex (M) },

en convenant de poser kod(M,L) = —oco si aucune puissance positive de L
ne possede de section non nulle.

La dimension de Kodaira de M, kod(M), est la dimension de Kodaira-
Ilitaka du fibré canonique de M, noté Kjs et défini comme le déterminant
du fibré cotangent de M : Ky = det(T*M). Les sections holomorphes de
Ky sont donc les formes holomorphes de degré maximal. Les applications
méromorphes O := @K/?k sont appelées «applications pluricanoniques ».
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2.2 ACTION D’UN ENDOMORPHISME ET RAMIFICATION

Si f: M — M est une application holomorphe surjective de M, la
transformation f* consistant a prendre l’image réciproque d’une forme
holomorphe par f définit un élément du groupe linéaire GL(HO(M , Km)) .
En notant F la transformation projective associée & f*, on a la relation

(3) Fo® =0;0f.

Cette remarque est valable en remplacant Kj, par ses puissances tensorielles
positives K®% @, par O et F par I’action F; de f sur les sections de K]%k.
Lorsque la dimension de Kodaira de M est strictement positive, il existe ainsi
une fibration méromorphe invariante par tout endomorphisme. L’action sur la
base de la fibration est linéaire: c’est la restriction de Fj; a I’image de ©.
Le théoréme suivant, pour lequel nous renvoyons a [28], § VI, et a [18], §7.6,
se déduit facilement de ce qui vient d’étre dit.

THEOREME 2.1. Soient M une variété complexe compacte dont la di-
mension de Kodaira est positive ou nulle et ©: M --» PHO(M,KS)*),
k > 0, les applications pluricanoniques. Si f est une transformation holomor-
phe surjective de M, il existe une transformation projective périodique Fj de
P(HO(M,K2")*) telle que © of = Fy o 6.

REMARQUE 2.1. Ceci montre que les endomorphismes des variétés com-
plexes compactes dont la dimension de Kodaira est strictement positive se
réduisent a des variétes de dimension inférieure. Les cas intéressants se situent
donc en dimension de Kodaira 0 et —oo. Lorsque la dimension de Kodaira de
M est maximale, i.e. kod(M) = dim¢(M), les fibres génériques de I’application
O, sont finies; par conséquent, tout endomorphisme de M est inversible et
le groupe des automorphismes de M est fini (voir [18], §7).

Si f: M — M est une transformation holomorphe surjective d’une variété
complexe compacte, le diviseur de ramification Ry de f est défini comme
I’ensemble des points au voisinage desquels f n’est pas un difféomorphisme
local sur son image. C’est le lieu d’annulation du jacobien de f, donc Ry est
I'ensemble vide ou un diviseur. Le théoréme suivant montre que Ry est vide
des que la dimension de Kodaira de M est positive ou nulle. La référence

la plus ancienne que je connaisse pour ce résultat est I’article [23] de Klaus
Peters.
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THEOREME 2.2 (K. Peters). Soit M une variété complexe compacte dont
la dimension de Kodaira est positive ou nulle. Toute application holomorphe
surjective de M dans M est un revétement non ramifié.

Démonstration. Supposons que Ry n’est pas vide et fixons une section
non nulle w de K2, pour k positif convenable. L’ image réciproque de w
par I'itéré n®™ de f est une section de Kﬁ’k qui s’annule sur 1’union des
diviseurs effectifs Ry, f~1(Rs), ..., f7""Y(Ry). Puisque f est surjective, on
obtient ainsi des sections du fibré en droites Ko© dont le lieu des zéros
(comptés avec multiplicité) croit indéfiniment. Ceci est impossible.

2.3 FIBRATION D’ ALBANESE

Pour les variétés kahlériennes, il existe une deuxiéme fibration naturelle
invariante par tout endomorphisme : la fibration d’ Albanese. Notons M , Q}W)
le C-espace vectoriel constitué des 1-formes holomorphes globales de M.
Puisque M est supposée kahlérienne, chaque forme holomorphe est fermée.
En particulier, lorsque <y est un lacet de M, I’intégration d’une 1-forme

holomorphe
w / w
gt

ne dépend que de la classe d’homologie [y] € H'(M,Z). La théorie de Hodge
montre que la partie sans torsion de H'(M,Z) se plonge de cette maniére en
un réseau cocompact de H°(M, Qi,)*. Le tore complexe obtenu en quotientant
HO(M , 9}4)* par ce réseau sera noté Alb(M) : c’est la variété¢ d’ Albanese de M.

Choisissons un point base x dans M. Si y est un point de M et w est une
1 -forme fermée, I’intégrale de w entre x et y dépend du chemin d’intégration
choisi, mais les différentes valeurs obtenues coincident modulo 'intégration
de w sur les lacets basés en x. On dispose ainsi d’une application holomorphe

4) ay: M — Alb(M), yr—>/y

pour chaque choix d’un point base x dans M. C’est la fibration d’Albanese
de M. Elle est équivariante sous l’action de tout endomophisme f, 1’action
induite par f sur Alb(M) étant la transformation affine associée a 1’action
de f par image réciproque sur les 1-formes holomorphes (le paramétre de
translation provient du choix du point base x).

Pour trouver des endomorphismes non inversibles qui ne préservent aucune
fibration, on peut donc supposer que la fibration d’Albanese de M est triviale,
c’est-a-dire que ses fibres sont finies ou que I’'image est un point. Dans
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le premier cas, I’existence d’endomorphismes non inversibles ne préservant
aucune fibration force M a étre un tore (voir [28]). Dans le second cas, le
premier groupe d’homologie de M est fini.

2.4  PETITE DIMENSION

Le théoréme d’Hurwitz montre que les courbes qui posseédent des endo-
morphismes de degré plus grand que 1 sont la droite projective et les courbes
elliptiques. Ceci peut étre démontré a I’aide de la remarque 2.1.

Les surfaces qui posseédent des endomorphismes non inversibles ne
préservant aucune fibration doivent étre cherchées parmi celles dont la di-
mension de Kodaira est 0 ou —oo. A coté des tores et du plan projectif on
trouve I’exemple des surfaces toriques; ainsi, la transformation polynomiale
[x:y:z]— [x*:y*: 7?] détermine un endomorphisme du plan projectif qui
se releve au plan projectif éclaté en [0:0: 1]. Les exemples ainsi construits
sur les variétés toriques sont tous conjugués a des endomorphismes du plan
projectif par une transformation birationnelle. Ces trois familles d’exemples
persistent en toute dimension.

D’apres [21], les endomorphismes non inversibles des surfaces kahlériennes
appartiennent tous a 'une de ces trois familles. De surcroit, les fibrations
méromorphes invariantes par des endomorphismes non inversibles deviennent
triviales apres revétement fini (voir [5], [21] et les références qui s’y trouvent).
La situation pour les surfaces est donc bien comprise. Les blocs élémentaires
sont des variétés homogenes.

Pour les variétés projectives de dimension 3 dont la dimension de Kodaira
est positive ou nulle, on dispose également d’une classification. Celle-ci
n’apporte pas de surprise (voir [25]). Le cas kod(M) = —oo est plus
intéressant et plus obscur: Ekaterina Amerik a étudié les endomorphismes
des variétés qui admettent une fibration par des espaces projectifs, ceci en
dimension quelconque [5], mais peu de résultats sont disponibles pour la
situation générale.

2.5 UNE QUESTION PROCHE

Au lieu de regarder les endomorphismes d’une variété X dans elle-
meéme, on peut s’intéresser aux applications surjectives f: X — Y entre
vari€tés de méme dimension. Dans [3], [4], [6], les variétés de Fano, les
quadriques et les variétés projectives avec un nombre de Picard égal a 1
sont traitées. Les méthodes employées ont un corollaire intéressant pour notre
€tude: une hypersurface lisse H de 1’espace projectif PY, N > 2, admet
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un endomorphisme non surjectif si et seulement si H est un plan ou une
quadrique de P? (voir [4] et [8]).

Dans ce texte, nous analysons le cas des espaces homogenes compacts.
Ceci permet de quitter le monde des variétés kihlériennes et de traiter des
exemples significatifs en dimension de Kodaira négative.

3. VARIETES HOMOGENES KAHLERIENNES

Une variété complexe compacte est homogene si le groupe de ses difféo-
morphismes holomorphes agit transitivement sur la variété. Dans ce cas, la
vari€té est isomorphe au quotient d’un groupe de Lie complexe G par un
sous-groupe de Lie complexe fermé H (voir [2]).

Cette partie classe les endomorphismes des variétés complexes compactes
qui sont a la fois kahlériennes et homogenes.

3.1 TORES

Soit V un espace vectoriel complexe de dimension finie n, I" un
réseau de V et A = V/I' le tore associé. Puisque le fibré tangent de A
est trivial, le principe du maximum montre que la différenticlle de tout
endomorphisme f: A — A est constante. Les endomorphismes de A sont
donc les transformations affines de V qui permutent les orbites de I'. Les
homothéties de rapport entier fournissent des exemples explicites mais il existe
quelques exemples nettement plus riches.

EXEMPLE 3.1. Soit A un réseau de la droite complexe C. Pour tout entier
n, A" est un réseau de C" stabilisé par 1’action des endomorphismes linéaires
de C" a coefficients entiers. Ainsi, pour n = 2, la transformation linéaire

4 2
S ;2
induit un endomorphisme de degré topologique 2% sur C?/A2.

3.2 VARIETES DE DRAPEAUX

Le deuxieme type d’exemples est fourni par les variétés de drapeaux,
c’est-a-dire les quotients compacts et lisses S/P ou S est un groupe de Lie
complexe semi-simple et P est un sous-groupe de Lie complexe connexe. Les
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