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faut-il trouver des exemples. Nous expliquerons que ces exemples doivent

être cherchés sur des variétés dont la dimension de Kodaira est négative et

montrerons la proposition suivante :

PROPOSITION 1.2. Soit M une variété compacte kâhlérienne dont la

dimension de Kodaira est positive ou nulle. Soit f un endomorphisme de

M non inversible. S'il existe une classe de Kdhler [a] telle que f*[cx.] soit

proportionnelle à [a] alors M est revêtue par un tore et f est revêtue par
une transformation affine de ce tore.

De surcroît, modulo des conjectures classiques sur les variétés kâhlériennes,

il est possible de classer les endomorphismes non inversibles qui ne préservent

pas de fibration lorsque la dimension de Kodaira est positive ou nulle.

1.4 Plan du texte. La partie 2 dresse un panorama succinct des idées

de base utiles pour comprendre les variétés complexes compactes possédant

un endomorphisme de degré plus grand que 1. Plusieurs points de vue ne

sont pas abordés, notamment la réduction algébrique, le quotient rationnel
et les arguments relatifs à la structure des groupes fondamentaux de variétés

kâhlériennes, mais des idées proches sont exploitées dans les parties suivantes.

Les parties 3 à 6 concernent la structure des variétés homogènes munies

d'un endomorphisme non inversible. La dernière partie poursuit la partie 2 et

démontre la proposition 1.2. La partie 2 peut donc jouer le rôle d'introduction
ou de motivation pour les parties 3 à 6, ou pour la partie 7. Puisqu'elle ne

présente que des résultats très classiques, elle peut être ignorée par le lecteur
averti.

1.5 Remerciements. Je tiens à remercier A. Huckleberry pour son
accueil à l'Université de Bochum et les discussions que nous avons eues autour
du sujet abordé ici. Les lectures attentives et les remarques des rapporteurs
et des rédacteurs de L'Enseignement Mathématique ont considérablement
amélioré la présentation de cet article. Je les en remercie.

2. Endomorphismes des variétés complexes compactes

jj Dans cette première partie nous dressons un panorama rapide des résultats
de base permettant d'aborder la question centrale étudiée dans cet article,
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à savoir: quelles sont les variétés complexes compactes qui possèdent un
endomorphisme holomorphe de degré topologique strictement supérieur à 1

2.1 Dimension de Kodaira

La dimension de Kodaira d'une variété complexe compacte M est un
nombre entier kod(M), éventuellement égal à — oo, qui peut prendre les

valeurs —oo,0,l,2,..., dime (M). Elle est définie de la manière suivante.

Si L est un fibré en droites holomorphe sur M, H°(M,L) désignera le

C-espace vectoriel constitué des sections holomorphes globales de L. La
dimension de ce C-espace vectoriel est finie.

Soit x un point de M et L la fibre de L en ce point. L'évaluation des

sections de L au point x détermine une application linéaire 6lx : H°(M, L) Lx.
Cette application est identiquement nulle lorsque toutes les sections globales
de L s'annulent en x; on dit alors que x est un point base de L. Une fois
fixé un isomorphisme de Lx avec la droite vectorielle C, 6ix s'interprète
comme une forme linéaire et celle-ci ne dépend du choix de l'isomorphisme
C ~ Lx que par un facteur multiplicatif. En tout point x de M qui n'est pas

un point base de L, on obtient ainsi un élément [6Lx] de l'espace projectif
P(H°(M,L)*). Pour les fibrés en droites qui possèdent au moins une section

non nulle, ce procédé détermine une application méromorphe

(1) ©£,: M—> P(H°(M,L)*)

dont les points d'indétermination sont contenus dans les points bases de L.
Pour chaque entier strictement positif k, cette construction peut être répétée

en remplaçant L par la puissance tensorielle L®k. La dimension de Kodaira-
Etaka de L est alors définie comme le maximum des dimensions des images

(3L®k (M) :

(2) kod (M, L) max { dime (0l®*(M)) }

en convenant de poser kod(M,L) —oo si aucune puissance positive de L
ne possède de section non nulle.

La dimension de Kodaira de M, kod (M), est la dimension de Kodaira-

Iitaka du fibré canonique de M, noté Km et défini comme le déterminant

du fibré cotangent de M : KM — det(T*M). Les sections holomorphes de

Km sont donc les formes holomorphes de degré maximal. Les applications

méromorphes 0* := 0^<s>* sont appelées «applications pluricanoniques».
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2.2 Action d'un endomorphisme et ramification

Si /: M -A M est une application holomorphe surjective de M, la

transformation /* consistant à prendre l'image réciproque d'une forme

holomorphe par / définit un élément du groupe linéaire GL(H°(M,Km))-

En notant F la transformation projective associée à /*, on a la relation

(3) Fo0! =0j o/.

Cette remarque est valable en remplaçant Km par ses puissances tensorielles

positives K^k, 0i par 0^ et F par l'action Fk de / sur les sections de K$k.

Lorsque la dimension de Kodaira de M est strictement positive, il existe ainsi

une fibration méromorphe invariante par tout endomorphisme. L'action sur la

base de la fibration est linéaire: c'est la restriction de Fk à l'image de 0£.
Le théorème suivant, pour lequel nous renvoyons à [28], §VI, et à [18], §7.6,

se déduit facilement de ce qui vient d'être dit.

THÉORÈME 2.1. Soient M une variété complexe compacte dont la
dimension de Kodaira est positive ou nulle et 0^: M —PK^)*),
k > 0, les applications pluricanoniques. Si f est une transformation holomorphe

surjective de M, il existe une transformation projective périodique Fk de

P (H°(M,K®k)*) telle que 0k of Fko®k.

Remarque 2.1. Ceci montre que les endomorphismes des variétés

complexes compactes dont la dimension de Kodaira est strictement positive se

réduisent à des variétés de dimension inférieure. Les cas intéressants se situent
donc en dimension de Kodaira 0 et — oo. Lorsque la dimension de Kodaira de

M est maximale, i.e. kod(M) dime (M), les fibres génériques de l'application
0£ sont finies; par conséquent, tout endomorphisme de M est inversible et
le groupe des automorphismes de M est fini (voir [18], §7).

Si /: M -A M est une transformation holomorphe surjective d'une variété

complexe compacte, le diviseur de ramification Rf de / est défini comme
l'ensemble des points au voisinage desquels / n'est pas un difféomorphisme
local sur son image. C'est le lieu d'annulation du jacobien de /, donc Rf est
l'ensemble vide ou un diviseur. Le théorème suivant montre que Rf est vide
dès que la dimension de Kodaira de M est positive ou nulle. La référence
la plus ancienne que je connaisse pour ce résultat est l'article [23] de Klaus
Peters.
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THÉORÈME 2.2 (K. Peters). Soit M une variété complexe compacte dont
la dimension de Kodaira est positive ou nulle. Toute application holomorphe
surjective de M dans M est un revêtement non ramifié.

Démonstration. Supposons que Rf n'est pas vide et fixons une section

non nulle lo de K^k, pour k positif convenable. L'image réciproque de uj

par l'itéré n&me de / est une section de K^k qui s'annule sur l'union des

diviseurs effectifs Rf, f~1(Rf), f~n~l(Rf). Puisque / est surjective, on
obtient ainsi des sections du fibré en droites K^k dont le lieu des zéros

(comptés avec multiplicité) croît indéfiniment. Ceci est impossible.

2.3 Fibration d'Albanese

Pour les variétés kâhlériennes, il existe une deuxième fibration naturelle
invariante par tout endomorphisme : la fibration d'Albanese. Notons H°(M, £2j^)

le C-espace vectoriel constitué des 1-formes holomorphes globales de M.
Puisque M est supposée kâhlérienne, chaque forme holomorphe est fermée.

En particulier, lorsque 7 est un lacet de M, l'intégration d'une 1-forme

holomorphe

ne dépend que de la classe d'homologie [7] G H1 (M, Z). La théorie de Hodge
montre que la partie sans torsion de H1 (M, Z) se plonge de cette manière en

un réseau cocompact de H°(M, QlM)*. Le tore complexe obtenu en quotientant
H°(M, Q]f)* par ce réseau sera noté Alb(M) : c'est la variété d'Albanese de M.

Choisissons un point base x dans M. Si y est un point de M et uj est une

1-forme fermée, l'intégrale de u entre x et 7 dépend du chemin d'intégration
choisi, mais les différentes valeurs obtenues coïncident modulo l'intégration
de uj sur les lacets basés en x. On dispose ainsi d'une application holomorphe

pour chaque choix d'un point base x dans M. C'est la fibration d'Albanese
de M. Elle est équivariante sous l'action de tout endomophisme /, l'action
induite par / sur Alb(M) étant la transformation affine associée à l'action
de / par image réciproque sur les 1-formes holomorphes (le paramètre de

translation provient du choix du point base x).
Pour trouver des endomorphismes non inversibles qui ne préservent aucune

fibration, on peut donc supposer que la fibration d'Albanese de M est triviale,
c'est-à-dire que ses fibres sont finies ou que l'image est un point. Dans

7

>y

(4)
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le premier cas, l'existence d'endomorphismes non inversibles ne préservant

aucune fibration force M à être un tore (voir [28]). Dans le second cas, le

premier groupe d'homologie de M est fini.

2.4 Petite dimension

Le théorème d'Hurwitz montre que les courbes qui possèdent des endo-

morphismes de degré plus grand que 1 sont la droite projective et les courbes

elliptiques. Ceci peut être démontré à l'aide de la remarque 2.1.

Les surfaces qui possèdent des endomorphismes non inversibles ne

préservant aucune fibration doivent être cherchées parmi celles dont la
dimension de Kodaira est 0 ou — oo. A côté des tores et du plan projectif on

trouve l'exemple des surfaces toriques; ainsi, la transformation polynomiale
[x : y : z] [x2 : y2 : z2] détermine un endomorphisme du plan projectif qui
se relève au plan projectif éclaté en [0:0:1]. Les exemples ainsi construits

sur les variétés toriques sont tous conjugués à des endomorphismes du plan

projectif par une transformation birationnelle. Ces trois familles d'exemples
persistent en toute dimension.

D'après [21], les endomorphismes non inversibles des surfaces kâhlériennes

appartiennent tous à l'une de ces trois familles. De surcroît, les fibrations

méromorphes invariantes par des endomorphismes non inversibles deviennent
triviales après revêtement fini (voir [5], [21] et les références qui s'y trouvent).
La situation pour les surfaces est donc bien comprise. Les blocs élémentaires

sont des variétés homogènes.

Pour les variétés projectives de dimension 3 dont la dimension de Kodaira
est positive ou nulle, on dispose également d'une classification. Celle-ci
n'apporte pas de surprise (voir [25]). Le cas kod(M) -oo est plus
intéressant et plus obscur: Ekaterina Amerik a étudié les endomorphismes
des variétés qui admettent une fibration par des espaces projectifs, ceci en
dimension quelconque [5], mais peu de résultats sont disponibles pour la
situation générale.

2.5 Une question proche

Au lieu de regarder les endomorphismes d'une variété X dans elle-
même, on peut s'intéresser aux applications surjectives /: X -» Y entre
variétés de même dimension. Dans [3], [4], [6], les variétés de Fano, les
quadriques et les variétés projectives avec un nombre de Picard égal à 1

sont traitées. Les méthodes employées ont un corollaire intéressant pour notre
étude: une hypersurface lisse H de l'espace projectif P^, N > 2, admet
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un endomorphisme non surjectif si et seulement si H est un plan ou une
quadrique de P3 (voir [4] et [8]).

Dans ce texte, nous analysons le cas des espaces homogènes compacts.
Ceci permet de quitter le monde des variétés kâhlériennes et de traiter des

exemples significatifs en dimension de Kodaira négative.

Une variété complexe compacte est homogène si le groupe de ses difféo-
morphismes holomorphes agit transitivement sur la variété. Dans ce cas, la
variété est isomorphe au quotient d'un groupe de Lie complexe G par un

sous-groupe de Lie complexe fermé H (voir [2]).
Cette partie classe les endomorphismes des variétés complexes compactes

qui sont à la fois kâhlériennes et homogènes.

3.1 Tores

Soit V un espace vectoriel complexe de dimension finie n, T un
réseau de V et A V/Y le tore associé. Puisque le fibré tangent de A
est trivial, le principe du maximum montre que la différentielle de tout
endomorphisme /: A -» A est constante. Les endomorphismes de A sont
donc les transformations affines de V qui permutent les orbites de T. Les
homothéties de rapport entier fournissent des exemples explicites mais il existe

quelques exemples nettement plus riches.

Exemple 3.1. Soit A un réseau de la droite complexe C. Pour tout entier

n, An est un réseau de Cn stabilisé par l'action des endomorphismes linéaires
de Cn à coefficients entiers. Ainsi, pour n 2, la transformation linéaire

induit un endomorphisme de degré topologique 24 sur C2/A2.

3.2 Variétés de drapeaux

Le deuxième type d'exemples est fourni par les variétés de drapeaux,
c'est-à-dire les quotients compacts et lisses S/P où S est un groupe de Lie
complexe semi-simple et P est un sous-groupe de Lie complexe connexe. Les

3. Variétés homogènes kâhlériennes

(5)
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