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connected component by SO(3) (i.e. by "any" group of the same rank), or
the group of components by 7j/4 (i.e. by "any" group of the same size), will
force the extension to be split.

Proof The assertions about the connected component and the group of

components are clear. Let us show that the extension associated to G is not

split. Let us denote [g, 7] G G the image of (g, 7) G SU(2) x D8 under the

canonical projection. Let S1 denote the standard maximal torus in SU(2), and

let N denote its normalizer in G. We have

N {[t,e] : t S1} II {[jt, e] : t e S1} II {r] : t E S1} II {\jt, r] : G S1}

II { [t,s]:t G S1} II {[//, ä] : teS1} II {ra] : / G S1} U { ra]:feS'}.
By contradiction, suppose that the extension associated to G is split, i.e. there

exists a section. As Z/2 x Z/2 is abelian, thus nilpotent, we deduce, by
Proposition 5.4, that the extension associated to N is also split. We want
to show that this is not possible by considering the elements of order 2 in
N. For n — 0,1, a straightforward calculation shows that in the component
corresponding to rns, an element [£, rns] is of order 2 if and only if t ±1,
and that the sub-component {[jt,rns] : t G S1} does not contain any element

of order 2. Two of the three non-trivial elements in T Z/2 x Z/2 must thus
be mapped by the section to [d=l,^] and fzbl,^]. Therefore, as the section
is a homomorphism, the image of the third non-trivial element is

[±frs].[±fs] [±l,r]
which is not of order 2. A contradiction that shows that the extension associated

to G is not split.
The property of minimality follows by Theorem 5.3, and by the fact that any

extension with SO(3) as normal subgroup is a direct product (because SO(3)
is complete, i.e. centerless and with trivial outer automorphism group).
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