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ADDITIVE NUMBER THEORY SHEDS
EXTRA LIGHT ON THE HOPF-STIEFEL o FUNCTION

by Alain PLAGNE

ABSTRACT. The famous Hopf-Stiefel o function appears in several places in
mathematics (linear and bilinear algebra, topology, intercalate matrices, . ..). However,
although the object of much study, this function kept a part of mystery since no simple
formula was known for it. We shall derive a simple and practical explicit formula
for o and more generally for (3, (p arbitrary prime), a generalized function due to
Eliahou and Kervaire. The proof relies on a new result in combinatorial group theory
which follows from additive number theoretical arguments. It is shown that this last
result generalizes earlier ones by Eliahou and Kervaire and by Yuzvinsky.

1. INTRODUCTION

A composition formula of size [r,s,n] over some field F (that we assume
to be of characteristic different from 2) is an identity of the form

W+ DO D =G+ 2D,

where z1,22,...,2, are n bilinear forms in the variables (x;,...,x,) and
1, -+, ¥s), with coefficients in F. For example, the law of moduli for complex
numbers provides the identity

O+ 2)0 4+ ¥3) = (ryr — x232)? + (oayy + x1y2)%,

which is a composition formula of size [2,2,2]. The law of moduli for
quaternions (respectively for octonions) provides a composition formula of
size [4,4,4] (respectively [8,8,8]) in a similar way. Conversely, Hurwitz’s
theorem [7] (see also [8]) states that the only possible values of n for which
a composition formula of size [n,n,n] exists are 1,2,4 and 8.
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In the late thirties, starting from the Hurwitz problem, Hopf [6] and Stiefel
[15] began to study real division algebras. They introduced a function of an
algebraic nature. The so-called Hopf-Stiefel function o (which depends on
two positive integral variables r and s) is defined by the formula

(1.1) ros =min{n such that (x +y)" =0 in Fp[x,y]/(x",y")}.

Hopf and Stiefel obtained a result which says that if a nonsingular bilinear
map from R” X R® onto R” exists over R, then n > ros (Hopf-Stiefel
theorem). The link between nonsingular bilinear maps and o is realized by
passing to projective spaces and their cohomology rings.

More generally, the o function appears in different parts of mathematics.
It allows a nice mathematical trip: starting from bilinear algebra (Hurwitz’s
problem, Pfister’s quadratic forms [10, 11]) and algebra (its basic definition
(1.1)), we pass through topology (Hopf-Stiefel theorem, real division algebras
and Yuzvinsky’s theorem [17]), visit the theory of intercalate matrices
(Yuzvinsky’s conjecture [17, 16]) and arrive at additive number theory ([5]
and the present paper). The reader interested in the many applications of o
is mainly referred to the nice survey [13] by Shapiro, to his recent book [14,
Chapters 12-15] and to the book by Rajwade [12], especially Chapter 13.

With the algebraic viewpoint (1.1), it is fairly natural to generalize, with
Eliahou and Kervaire [5], the o function in the following way. For any given
prime p, we set

By(r,s) = min{n such that (x+y)" =0 in F,[x,y]/(x",y")}.

Evidently, 5, = o. It is a theorem of Eliahou and Kervaire [5] that this
extension of (1.1) is still relevant in the additive number theoretical context.

Although many properties of o and more generally of 3, were known
(for instance recursion formulas or expression in terms of p-adic expansions),
describing these functions efficiently appeared difficult, so that it.-is not rare
to see tables giving the first values of o.

In this paper, perhaps surprisingly, we shall derive a simple and practical
explicit formula for o and more generally for 8, (p arbitrary prime).

THEOREM 1. Let p be any prime number. The function (3, is given by
the formula

Bp(r, 5) = min ([r/p"] + [s/p'] — 1) P

Notice that clearly, the minimum involved is attained for a value of ¢
satisfying 0 < ¢ < [log(max(r, s))/ logp] .
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In particular, this result elucidates, in some sense, the Hopf-Stiefel function.

THEOREM 2. The Hopf-Stiefel function is
= mi 2! 21 —1)2".
ros=min ([r/27+[s/2] - 1)

With this formula, a large number of properties of o follow immediately
or admit a simplified proof.

In fact Theorem 1 follows from an additive number theoretical theorem
(Theorem 3 below) which is of independent interest. Given a finite Abelian
group G, we define (as in [5]) the function of two integral variables r and s
(1 <r,s<|G|)

p(r,s) = min{| A + B, with A,BC G, |A|=r, |B| =s}
where A + B is the usual Minkowski sum of sets, namely
A+B={a+bwithaec A, be B}.

Given an arbitrary Abelian group G, determining the function pg 1S not easy:
this is an open problem in general for G finite and Abelian. However, Eliahou
and Kervaire [5] obtained such a result for finite groups of prime exponent,
thus generalizing Yuzvinsky’s result [17] for binary spaces.

Using a different approach (based on Kneser’s theorem [9]), we shall obtain
a result valid for any cyclic group.

THEOREM 3. Let n be any integer. If 1 < r,s <n, we have

1z, /nz(r,8) = n;|inn ([r/d] + [s/d] —1)d.

Taking n = p, a prime, gives exactly the Cauchy-Davenport theorem
[2, 3, 4]. Moreover, as will be explained in Section 3, this result contains that
of Eliahou and Kervaire.

Since cyclic groups are characterized by the equality expG = |G|, this
theorem is a direct consequence of the following more general result.

THEOREM 4. Let G be any finite Abelian group. Then, if 1 <r,s <|G|,
we have

min ([r/d] + [s/d] —1)d < puc(r,s) < min ([r/d] +[s/d] —1)d.

aile ol 14)ja
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With these results, we know the behaviour of ug at the two endpoints
of the spectrum (cyclic groups and groups of prime exponent). What now
remains to be done is to fill the gap between the upper bound and the lower
bound for general finite Abelian groups.

2. PROOF OF THEOREM 4
Let G be any given finite Abelian group and let 1 < r,s < |G].

2.1 THE LOWER BOUND

If pg(r,s) > r+s—1, the result is immediate (take d = 1). We may thus
assume that

2.1 po(r,s) <r+s—1.

Then, choosing two sets A and B in G with respective cardinalities » and
s, such that | A + B| attains ucs(r,s), we get

| A+ B| = pe(r,s) < | A+ |B| — 1.

We are in a position to apply Kneser’s theorem [9] on the structure of sets
with a small sumset. It follows that there exists a subgroup H of G (namely
the stabilizer of A + B) such that

A+ B|=|A+H|+|B+H|— |H|.

Denoting by (A + H)/H (resp. (B + H)/H) the H-cosets that A (resp. B)
intersects, we obtain

|A+B|:<'A+H' 'B+H 1)|H|

H
> ([r/f1+1s/f1 = 1f

where f denotes the cardinality of H. Since Lagrange’s theorem shows that
f divides |G|, we get

| A+ B| > min([r/d] + [s/d] — 1)d.
d||G]|

From this it follows that, in any case,

ug(r,s) > nlw.ln(fr/d] + [s/d] — 1)d,

which is the desired lower bound.

|
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2.2 THE UPPER BOUND

Let H be any subgroup of G. Choose Ay and By in G/H with respective
cardinalities [r/|H|| and [s/|H|| and such that
| Ao+ Bo| = we/u([r/IH|], [s/|H[]) -

Now choose A of cardinality r and B of cardinality s in G such that the
image of A (resp. B) by the canonical projection on G/H is included in Ay
(resp. Bp). One has

|A+ B| < pgyu([r/IHI], [s/|HIDIH].

This proves the first lemma we need.

LEMMA 1. For any finite Abelian group G
potr,) < min T/ 1B, [s/HIDIH]

The second useful point is synthesized in the next folkloric lemma.

LEMMA 2. Let G be a finite Abelian group. For any positive integer m,
the following two propositions are equivalent

(1) m divides expG,
(ii) there exists a subgroup H of G such that G/H is isomorphic to Z/mZ.

In the case of a cyclic group K, trivial considerations (take two sets with
consecutive elements), show that, for any u,v < |K]|,
(2.2) pg(r,s) <r+s—1.

Using consecutively Lemma 1, inequality (2.2) and Lemma 2 yields the
following chain of inequalities :

pe(r,s) < }I}lgifcl}uc/ﬁ(ﬁ/IHH» [s/|H|D|H|

% e rg}l}} o Hom([r/1HI, [s/[HDIH]|

< oo min (/I + [s/|H[] - 1) |H

~ Jo/m] g}?es expG(l—r/lHH + [s/|H[] = 1) |H]

G
= min_ (17/16[1 + Tsf/I61] - 1) 1)
" flex o
The change of variable d = |G|/f yields a parameter d subject to the two

restrictions e—lﬂ d and d ] |G| ; this proves the upper bound in Theorem 4.
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3. FROM THEOREM 3 TO THEOREM 1

We first use the theorem of Eliahou and Kervaire (see Section 3 of [5]),
which states that if p is an arbitrary prime, r and s two integers, then

(3.1) By(r,s) = ez pzy(r, s)

whenever p? > r,s.

Now, from Theorem 10 of [1], it follows that ug coincides with pg: as
soon as G and G’ are two Abelian p-groups of the same order. In other
words,

(3.2) oz /pzyi (s $) = iz, /paz(T, ) .

We would like to emphasize that from our method (more precisely, using
simply Lemma 1) together with an inductive argument (the quotient groups of
(Z./pZ)* have the same form), we are able to derive a simple direct (that is,
without using [1]) alternative proof of (3.2). Indeed, the only thing to verify
1s that if

(3.3) r+s—1<([r/p"] + [s/p"] = 1) p*

for any k£ > 1 then we can construct sets A and B of respective cardinalities
r and s with |A+B| = r+ s — 1. This is achieved by taking for A
(resp. for B) the r (resp. the s) smallest possible elements in the sense
of the lexicographic order. Hypothesis (3.3) then ensures that, in this case,
A+Bl=r+s—1.

We are now ready to prove Theorem 1. We put for instance d = r + s
(but any sufficiently large d will do). Using consecutively (3.1), (3.2) and
Theorem 3, we obtain '

Bp(r,8) = iz /pzy (T, $)
— /J'Z/de(ra s)
= rrllin ([r/] + [s/t] = 1) ¢
tip?
= min ([r/p*] + [s/p*] = 1) p"
= min ([r/p"] + [s/p"] = 1) p",

which proves Theorem 3.
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