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44 P. ETINGOF AND E. STRICKLAND

called states of the system. The dynamics of the system x = x(z), p = p(t)
depends on the Hamiltonian, or energy function, E(x,p) on T*X. Given E
and the initial state x(0), p(0), one can recover the dynamics x = x(?),
p = p(t) from Hamilton’s differential equations %ﬂ = {f,E}. If X is
locally identified with R" by choosing coordinates xi,...,x,, then T%X is
locally identified with R?>" with coordinates xi,...,%,,p1,...,Pn. In these
coordinates, Hamilton’s equations may be written in their standard form
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A function I(x,p) is called an integral of motion for our system if
{I,E} = 0. Integrals of motion are useful, since for any such integral
the function I(x(#), p(¢)) is constant, which allows one to reduce the number
of variables by 2. Thus, if we are given n functionally independent integrals
of motion I,...,I, with {[;,[;} = 0 for all 1 < [,k < n, then all 2n
variables x;,p; can be excluded, and the system can be completely solved by
quadratures. Such a situation is called complete (or Liouville) integrability.

X

2.2 THE CLASSICAL CALOGERO-MOSER SYSTEM

Quasi-invariants are related to many-particle systems. Consider a system
of n particles on the real line R. A potential is an even function

Ux)=U(—x), xeR.

Two particles at points a, b have energy of interaction U(a — b). The total
energy of our system of particles is

noo2
E = Z% +3 U - x).
i=1 i<j
Here, x; are the coordinates of the particles, p; their momenta. The dynamics
of the particles x; = x;(t), p; = pi(¢) is governed by the Hamilton equations
with energy function E.

This is a system of nonlinear differential equations, which in general can
be difficult to solve explicitly. However, for special potentials this system
might be completely integrable. For instance, we will see that this is the case
for the Calogero-Moser potential,

U = =,
X

~ being a constant.
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The Calogero-Moser system has a generalization to arbitrary Coxeter
groups. Namely, consider a finite group W generated by reflections acting on
the space b, and keep the notation of the previous section. Fix a W -invariant
nondegenerate scalar product (—,—) on h. It determines a scalar product
on h*. Define the “energy function”

(p p) Z 7s(a‘saas)

R xebh, peh”

E(x,p) =
on T*fh = h x h*, where v: £ — C is a W-invariant function. Notice that
although oy is defined up to a non zero constant, by homogeneity, E is
independent of the choice of «,. We will call the system defined by E the
Calogero-Moser system for W.

If W is the symmetric group S,,, h = C”, then X is the set of transpositions
sij» 1 <J, and we can take oy = e; — ¢j, Then we clearly obtain the usual
Calogero-Moser system.

Below we will see that the Calogero-Moser system for W is completely
integrable.

2.3 THE QUANTUM CALOGERO-MOSER SYSTEM

Let us now discuss quantization of the Calogero-Moser system. We start
by quantizing the energy E by formally making the substitution

8

where 7 is a parameter (Planck’s constant). This yields the Schrodinger
operator

E\ — ——A Z ’Ys(amas) ,
SEZ
where A denotes the Laplacian.
In particular, in the case of W =S, we have

2. . . .
where A = > ; g_xl?' Setting G, = %%, we will from now on consider the
operator

og(x)

called the Calogero-Moser operator.
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