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The solution can easily be computed by differentiating the first equation and
then subtracting the second, thus obtaining the new system
w// . % ¢/ — k2 ?p

X
1

77b/l o (__ 4 kzx)wl — —k3x¢ ]
X

Taking the difference, we get the first order equation

k2

V=

whose solution (up to constants) is given by ¢ = (kx — 1) et

In fact, one can easily calculate ,, for a general m.

PROPOSITION 2.12.  t),(k,x) = (x0 —2m~+ 1)(x0 —2m —1) - - - (x0 — 1) €**.

Proof. We could use the direct method of Example 2.11, but it is more
convenient to proceed differently. Namely, we have

(0% — %’”axxa —2m+1)= @0 —2m+ 1)(8* — @8)

as it 1s easy to verify directly. So using induction on m starting with m =0,
we get

(@ — 20y, ) = (00— 2m 1 1) D 1) = Rl ),

and 1,,(k,x) is our solution.  []

3. LECTURE 3

3.1 SHIFT OPERATOR AND CONSTRUCTION OF THE BAKER-AKHIEZER FUNCTION

In Lecture 2, we have introduced the Baker-Akhiezer function 1 (k,x) for
the operator
2¢
L=A- >
2 o

The way to construct ) (k,x) is via the Opdam shift operator. Given a function
m: 2 — Z,, Opdam showed in [Opl] that there exists a unique W -invariant
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differential operator S, of the form 0,,(x)0,,(0x)+1.0.t., with §,,(x) = [[;c5 o®
such that '
LySm = Snq(0)

for every g € C[h] = Clqi, ..., q,]. From this, if we set ¢ (k,x) = S,e*?,
we get

7 Ly = Snq(0) e = q(k)y,

qc C[Q];---aQn]-

We claim that equation (7) must in fact hold for all ¢ € Q,,. Indeed, near a
generic point x, the functions 1 (wk,x) are obviously linearly independent and
satisfy (7) for symmetric g. Thus, they are a basis in the space of solutions
(we know that this space is |W|-dimensional). Consider the matrix of L, in
this basis for any g € Q,,. Since v (k,x) is a polynomial multiplied by e®**,
this matrix must be diagonal with eigenvalues g(k), as desired.

EXAMPLE 3.1. As we have seen in the previous section, for W = Z/2
and h =C,

Smw= @0 —2m+ 1)x0 —2m—1)---(x0 — 1).

3.2 BEREST’S FORMULA FOR Lq

We are now going to give an explicit construction of the operators L, for
any q € Op,.
Let us identify, using our W-invariant scalar product, fj with h*, and let
us choose a orthonormal basis x;,...,x, in h*. If x € h*, we will write D,
for the Dunkl operator relative to the vector in ) corresponding to x under
our identification. Thus i
L=>) D..
i=1

PROPOSITION 3.2 (Berest [Bel). If g € O, is a homogeneous element of

degree d, then
(adL)"lg =0.

Proof. It is enough to prove that
((ad L)** gk, x) = 0.

Indeed, it follows from the definition of (k,x) that in the ring D(U) this
implies : ((ad L)**'¢)S,, = 0, so that (ad L)**! g = 0, since D(U) is a domain.




QUASI-INVARIANTS OF COXETER GROUPS 55

Given g € Qp, we will denote by L% the operator g(Dy,, - - -, Dy,). Notice
that since ¥k, x) = (x,k), we have LPy = g(x)¢p. Thus we deduce, for

P,q," € O,

L,r(0)Lytp = Lyr(0p(kyy = p(k)Lyr(x) 9
= p(k)L,LPp = p(LP L = p()LPq(k) -

It follows that

(@d L) gy = (=1 @O kLY.
i=1

Since L, is a differential operator of degree d, we get ad(} kLY =0,
as desired. L[]

Notice now that the operator (adL)?q(x) commutes with L. Its symbol is
given by (ad A)?q(x) = 2¢d!q(d). So we deduce the following

COROLLARY 3.3 (Berest’s formula, [Bel). If g € O, is homogeneous of
degree d, then
1

Ly = i

(ad L)?q(x) .

Proof. This is clear from Proposition 2.8, once we remark that (ad L)Y q(x)
has the required homogeneity.  []

We want to give a representation theoretical interpretation of what we have
just seen. Consider the three operators

> X L
8) > X H=[E,F]
It is easy to check that [H,E] = 2E, [H,F] = —2F. We deduce that
the elements E,F,H span an sl(2) Lie subalgebra of D(U). Thus sl(2)

acts by conjugation on D(U). We can then reformulate Proposition 3.2 as
follows :

PROPOSITION 3.4. Any polynomial q € Q,, of degree d is a lowest weight
vector for the sl(2)-action of weight —d and generates a finite dimensional

module (necessarily of dimension d + 1) for which L, is a highest weight
vector.
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Proof. An easy direct computation shows that
H=[E F]——ix-i%—c
T i=1 0% ,

where C is a constant. Thus if g is homogeneous of degree d, we have
[H,L,] =dL,.

This and the fact that [L,L,] = 0, implies that L, is a highest weight vector
of weight d. Also since F is a polynomial, we deduce that adF‘H'qu =0,
so that L, generates a (d + 1)-dimensional irreducible s[(2)-module. L]

One last property about these operators is given by

PROPOSITION 3.5 ([FV]). For any q € Oy, the operator L, preserves Q.

Proof. Let us begin by proving that L preserves Q,,.

Take f € Qn, so that for any s € X, f — 5f = o?™*t, t € C[B].
Let us start by showing that Lf is a polynomial. Clearly Lf = 6. !g, with
g € C[b], and ¢, = Hszmﬁéo o, . Since L is W-invariant, Lf —°(Lf) = L(f — °f)
is clearly divisible by o?™~! if m; > 0. In particular, it is always
regular along the reflection hyperplane of s. On the other hand, since
Lf — S(Lf) = 6-'(q + °q), we deduce that g + g is divisible by «; if
mg > 0. But then ¢ = ((g + °q) + (¢ — *¢))/2 is divisible by «y if m; > 0,
hence it is divisible by ¢, so that Lf lies in C[h].

We have already remarked that L(f — *f) is divisible by 2™~ if m; > 0.
In fact

L(f — *f) = La>™ Nt 4 ™%,

where 7 is a suitable polynomial.

But since
2my
LaZ™ 1 = 2my(2m, + D(as, 0302 = 2my@my + 1)y (o, )™
s'EX g
' aSZm
= —2my(2m; + 1) Z (ar, arg) P

s'EX 5! s

we deduce that L(f — °f) is divisible by «2™. On the other hand, since
L(f — °f) = Lf — 5(Lf), this polynomial is either zero or it must vanish to odd
order on the reflection hyperplane of s. We deduce that it must be divisible
by o2™t1, proving that Lf € Q,,.
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We now pass to a general L,, g € Q,. We may assume that g 18
homogeneous of, say, degree d. By Corollary 3.3 we have that L, is a non
zero multiple of (adL)*(g). Since both g and L preserve Q,., our claim
follows. [l ‘

3.3 DIFFERENTIAL OPERATORS ON X,

Now let us return to the algebra of differential operators D(X,,). Notice
that D(X,,) contains two commutative subalgebras (both 1somorphlc to On).
The first is Q,, itself, the second is the subalgebra Qm consisting of the
differential operators of the form L, with g € Q. It is possible to prove

THEOREM 3.6 ([BEG]). D(X,,) is generated by Qn and Q.

Notice that by Corollary 3.3 we in fact have that D(X,,) is generated by
Omn and by L.

EXAMPLE 3.7. If W=1Z/2, h = C we get that D(X,,) is generated by
the operators

Theorem 3.6 together with Proposition 3.4, imply

COROLLARY 3.8 ([BEG]). D(X,,) is locally finite dimensional under the
action of the Lie algebra sl(2) defined in (8).

This Corollary implies that our s{(2) action on D(X,,) can be integrated
to an action of the group SL(2). In particular we have

0 1
(5 o) o=

for all g € Q,,. This transformation is a generalization of the Fourier transform,
since it reduces to the usual Fourier transform on differential operators on b
when m = 0.

EXAMPLE 39. If W = Z/2, h = C, we get that the monomials
{x¥} U {x?*2m+11 are (up to constants) all lowest weight vectors for the s[(2)
action on D(X,,). x* has weight —n. We deduce that D(X,,) is isomorphic as a

sl(2)-module to the direct sum of the irreducible representations of dimension

n+1 for n even or n =2(m-+1i)+ 1, each with multiplicity one.
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3.4 THE CHEREDNIK ALGEBRA

Let us now return to the algebra A of operators on U generated by D(U)
and W. This algebra contains the Dunkl operators

D, = 8y+ch

SEX

(ozs,y)(s .
o

LEMMA 3.10. The following relations hold :

[xi)xj] — [DXNDXJ'] - 07 VI S l7.] S n

Dyl = b5+ 3 e 200 gy < iy
= (0, Cts)

wxw ™! = w(x), wDyw_1 =Dyyy, YweW,xebh*, yeh.

Proof. The proof is an easy computation, except for the relations
[Dy,, D] = 0, which follow from Theorem 2.6.  []

This lemma motivates the following definition.

DEFINITION 3.11 (see e.g. [EG]). The Cherednik algebra H, 1s an
associative algebra with generators x;,y;,i = 1,...,n, and w € W, with
defining relations

[xi:xj] = [ylayj] = 07 V1 < la] <n
i, %] = 6 + Z N (i, o) (x5, )

ex (0, ag)

S, V1 SlL] _<_7’l

wrw™! = w@), wyw™ = w), wew =ww, Yw,w €W, x€h*, yeb.

This algebra was introduced by Cherednik as a rational limit of his
double affine Hecke algebra defined in [Ch]. Notice that if ¢ = 0 then
Hy = D(h) x C[W].

Lemma 3.10 implies that the algebra H, is equipped with a homomorphism
¢: H. — A, given by w — w, x; = xi, ¥i — Dy,

Cherednik proved the following theorem.

THEOREM 3.12 (Poincaré-Birkhoff-Witt theorem). The multiplication map
p: Clhl® Clh*] ® C[W] — H.

given by u(f(x) ® g(y) @ w) = f(x) gy)w is an isomorphism of vector spaces.
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Proof. 1t is easy to see that the map p is surjective. Thus, we only have
to show that it is injective. In other words, we need to show that monomials
x’f ...xf;y{‘ . yiw are linearly independent in H,.. To do this, it suffices to
show that the images of these monomials under the homomorphism ¢, i.e.
xif x;D!C} ...D){,’;w, are linearly independent.

Given an element A € A, writing A=) . P,w with P, € D(U) we
define the order of A, ordA, as the maximum of the orders of the P, ’s.
Notice that ordAB <ordA+ordB. We now remark that for any sequence of
non negative indices (iy,...,i,),

Dl ---Dir =i ... 9 4 Lout.

Indeed this is true for D,,. We proceed by induction on r =i +---+1i,. We
can clearly assume i; > 0, so by induction,

Dy Dy = 0y 4 Lot )02+ 0 + Lot) = 1 -+ O + Lo.t.

From this we deduce that for any pair of multiindices I = (iy,...,i,),
J = (i,.- ), w € W, setting x; = x;""---x,", D; = Di ---Dj",
0y =04l --- 0}, we have

xiDyw = x;0;w + lo.t.

Using this and the linear independence of the elements x;0;w, it is immediate

to conclude that the elements x;D;w are linearly independent, proving our
claim. [

REMARK 1. We see that the homomorphism ¢ identifies H. with the
subalgebra of A generated by C[h], the Dunkl operators D,, yeh and W.

REMARK 2. Another way to state the PBW theorem is the following. Let
F* be a filtration on H, defined by deg(x;) = deg(y;) = 1, deg(w) = 0. Then
we have a natural surjective mapping from C[h x h*] x W to the associated

graded algebra gr(H.). The PBW theorem claims that this map 1is in fact an
isomorphism.

3.5 THE SPHERICAL SUBALGEBRA

Let us now introduce the idempotent

1
e:—“—/ZwGC[W].
wew



|
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DEFINITION 3.13. The spherical subalgebra of H. is the algebra eH_ e.

Notice that 1 ¢ eH.e. On the other hand, since ex = xe = e for
x € eH.e, e 1is the unit for the spherical subalgebra. We can embed both
C[h*1"¥ and C[h]" in the spherical subalgebra as follows. Take f € C[h*]"
(the other case is identical) and set m.(f) = fe. Since f is invariant, we
have efe = fe* = fe = m,(f), so that m, actually maps C[h*]" to eH_e.
The injectivity is clear from the PBW-theorem. As for the fact that m, is a
homomorphism, we have m.(fg) = fge = fge*> = fege = m,(f)m.(g). From
now on, we will consider both C[h*]" and C[h]" as subalgebras of the
spherical subalgebra.

3.6 CATEGORY O

We are now going to study representations of the algebras H, and eH_ e.

DEFINITION 3.14. The category O(H.) (resp. O(eH.e)) is the full
subcategory of the category of H,.-modules (resp. eH.e-modules) whose
objects are the modules M such that

1) M 1s finitely generated.

2) For all v € M, the subspace C[h*]"v C M is finite dimensional.

We can define a functor
F: OH,) — O(eH_.e)

by setting F(M) = eM. It is easy to show that F(M) is an object of O(eH._e).

We are now going to explain how to construct some modules in O(H,)
which, by analogy with the case of enveloping algebras of semisimple Lie
algebras, we will call Whittaker and Verma modules. First, take A € h*.
Denote by Wy C W the stabilizer of A. Take an irreducible W) -module 7.
We define a structure of C[h*] x C[W)]-module on 7 by

(fw)v = fN)(wv) Yv eT, we Wy, feClh*].

It is easy to see that this action is well defined and we denote this module
by AM#r. We can then consider the H.-module

M\, 7) = He ®cry*1sCiwa] AFT

This is called a Whittaker module. In the special case A = 0 (and
hence W) = W), the module M(0,7) 1s called a Verma module. It is

- clear that these are objects of (0. Notice that as C[h] x C[W]-module,

M\, ) = C[hH] ®c CIW] @ctwy) T-
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EXAMPLE 3.15. If A =0 and 7 = 1 is the trivial representation of W, the
Verma module M(0,1) = C[h]. The action of C[h] is given by multiplication,
that of C[h*] is generated by the Dunkl operators and W acts in the usual way.

3.7 GENERIC c

Opdam and Rouquier have recently studied the structure of the categories
O(H,.), O(eH_.e), and found that it is especially simple if ¢ is “generic” in a
certain sense. Namely, recall that for a W-invariant function g: X — C* one
can define the Hecke algebra He,(W) to be the quotient of the group algebra
of the fundamental group of U/W by the relations (75— 1)(T;+g;) = 0, where
T, is the image in U/W of a small half-circle around the hyperplane of s in
the counterclockwise direction. It is well known that He, (W) is an algebra
of dimension |W/|, which coincides with C[W] if ¢ = 1. It is also known
that He,(W) is semisimple (and isomorphic to C[W] as an algebra) unless g
belongs for some s to a finite set of roots of unity depending on W (see [Hul]).

DEFINITION 3.16. The function c¢ is said to be generic if for g = e*™,
the Hecke algebra He,(W) is semisimple.

In particular, any irrational ¢ is generic, and (more important for us) an
integer valued ¢ is generic (since in this case g = 1). We can now state the
following central result:

THEOREM 3.17 (Opdam-Rouquier [OR]; see also [BEG] for an exposition).
If ¢ is generic (in particular, if c takes non negative integer values), then
the irreducible objects in O are exactly the modules M(\, T). Moreover, the
category O is semisimple.

We also have

THEOREM 3.18 ([OR]). If c is generic then the functor F is an equivalence
of categories.

From Theorem 3.17 we can deduce
THEOREM 3.19 ([BEG]). If c is generic, then H. is a simple algebra.

In the case ¢ =0, we get the simplicity of C[h @ h*] x C[W], which is

~ well known.
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3.8 THE LEVASSEUR-STAFFORD THEOREM AND ITS GENERALIZATION

Lf:t us now recall a result of Levasseur and Stafford:

THEOREM 3.20 ([LS]). If G is a finite group acting on a finite dimensional

vector space V over the complex numbers, then the ring D(V)C is generated
by the subrings C[V]® and C[V*]°.

As an example, notice that if we let Z/nZ act on the complex line by
multiplication by the n™ roots of 1, we deduce that the operator x% can
be expressed as a non commutative polynomial in the operators x" and (i:,,,
a non-obvious fact. We note also that this theorem has a purely “quantum”
nature, 1.e. the corresponding “classical” statement, saying that the Poisson
algebra C[V x V*1¢ is generated, as a Poisson algebra, by C[V]® and C[V*]°,
is in fact false, already for V= C and G =Z/nZ.

One can prove a similar result for the algebra eH.e. Namely, recall that
the algebra eH.e contains the subalgebras C[h]", and C[H*]".

THEOREM 3.21 ([BEG]). If c is generic then the two subalgebras C[H]V
and C[h*1V generate eH.,e.

Notice that if ¢ = 0, then eHye = D(h)", so Theorem 3.21 reduces to
the Levasseur-Stafford theorem.

REMARK. It is believed that this result holds without the assumption of
generic ¢. Moreover, it is known to be true for all ¢ if W is a Weyl group
not of type E and F, since in this case Wallach proved that the corresponding
classical statement for Poisson algebras holds true. Nevertheless, the genericity
assumption is needed for the proof, because, similarly to the proof of the
Levasseur-Stafford theorem, it is based on the simplicity of H..

3.9 THE ACTION OF THE CHEREDNIK ALGEBRA TO QUASI-INVARIANTS

We now go back to the study of Q,,. Notice that the algebra eH,,e acts on
C[h1%, since e gives the W-equivariant projection of C[h] onto C[h]". It is
clear that this action is by differential operators. For instance, the subalgebra
C[H]" C eH,e acts by multiplication. Also, an element g € C[H*1V C eH,e
acts via the operator q(Dy,,...,D, ). By definition this operator coincides
with L, on C[h]".
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The following important theorem shows that this action extends to Q.

THEOREM 3.22 ([BEG]). There exists a unique representation of the
algebra eH,e on Q,, in which an element q € C[01V acts by multiplication
and an element q € C[h*]" by L,.

Proof. Since by Proposition 3.5, L, preserves O, we get a uniquely
defined representation of the subalgebra of eH,e generated by C[h]" and
C[b*]W on Q,,. The result now follows from Theorem 3.21. ]

3.10 PROOF OF THEOREM 1.8

Finally we can prove Theorem 1.8.

To do this, observe that as an eH,e-module, Q,, i1s in the category
O(eH,e), and C[h*]" acts locally nilpotently in Q,, (by degree arguments).
We can now apply Theorem 3.18 and Theorem 3.17 and deduce that Q,, i1s
a direct sum of modules of the form eM(0,7). As a C[h] x C[W]-module,
M0, 7) = C[h] ® 7. On the other hand, by Chevalley’s theorem, there is an
isomorphism C[h] ~ C[H]¥ ® C[W], commuting with the action of W and
C[H]". Thus we get an isomorphisms of C[h]" -modules

eM(0,7) ~ (MO, )" ~ C[H]" @ (CIW] @)Y ~CHV &7,

proving that eM(0,7) and hence Q,, is a free C[h]" -module. []

EXAMPLE 3.23. For W = Z/2 and h = C, take the polynomials 1, x>"+!.
Notice that L(1) = L(x*"*1) = 0 while s(1) = 1, sG> 1) = —x¥"+! s € Z/2
being the element of order two. It follows that O,, as a eH,,e-module is the
direct sum of C[x*] @ x*"+!C[x?]. These modules are irreducible. Moreover,
Clx?] ~ eM(0,1), x*"F1C[x*] ~ eM(0,¢), € being the sign representation.

3.11 PROOF OF THEOREM 1.15

Let I be a nonzero two-sided ideal in D(X,,). First we claim that [
nontrivially intersects Q,,. Indeed, otherwise let K € I be a lowest order
nonzero element in 7. Since the order of K is positive, there exists f € Q,, such
that [K,f] # 0. Then [K,f] € I is of smaller order than K, a contradiction.

Now let f € Qn be an element of 7. Then g = [[, . *“f € I. But g
is W-invariant. This shows that the intersection J of I with the subalgebra
H, in D(X,,) is nonzero. But H,, is simple by Theorem 3.19, so J = H,,.
Hence, 1 € J C I, and I = D(X,,). [
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