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316 E. MEINRENKEN

REMARK 2.8. As pointed out in Mathai-Stevenson [21], this notion of
equivariant bundle gerbe is sometimes ’really too strong’: For instance, if
X =[] U,, for an open cover U = {U,,a € A}, a G-action on X would
amount to the cover being G-invariant. Brylinski [9] on the other hand gives
a definition of equivariant Chatterjee-Hitchin gerbes that does not require
invariance of the cover.

To define equivariant connections and curvature, we will need some notions
from equivariant de Rham theory [15]. Recall that for a compact group G, the
equivariant cohomology Hy.(M,R) may be computed from Cartan’s complex of
equivariant differential forms €f.(M), consisting of G-equivariant polynomial
maps «: g — 2(M). The grading is the sum of the differential form degree
and twice the polynomial degree, and the differential reads

(dg @) () = da(§) — Ubm)(©),

where &y = %|t:0 exp(—t£) 1s the generating vector field corresponding to
¢ € g. Given a G-equivariant connection V> on an equivariant line bundle, one
defines [3, Chapter 7] a dg-closed equivariant curvature curvg(V%) € Qé(M).

A equivariant connection on a G-equivariant bundle gerbe (X,L,7) over
M is a pair (VE,Bg), where V! is an invariant connection and Bg € Qé(X)
an equivariant 2-form, such that §V*¢ = 0 and 6Bg = 5- curvg(V5). Its
equivariant 3-curvature ng € Q%L(M) is defined by 7*ng = dg Bg. Given
an invariant pseudo-line bundle connection VZ on a equivariant pseudo-line
bundle (E,s), one defines the equivariant error 2-form wg by

*we = — curvg(VE) — Bg.
27l

Clearly, dgwg + n¢g = 0.

3. GERBES FROM PRINCIPAL BUNDLES

The following well-known example [7], [24] of a gerbe will be important
for our construction of the basic gerbe over G. Suppose U(1) — K > K is
- a central extension, and (I', 7) the corresponding simplicial gerbe over B.K.
Given a principal K -bundle 7: P — B, one constructs a bundle gerbe (P, L,1),
sometimes called the lifting bundle gerbe. Observe that

E.,P =P xxE,K,
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which we may view as a fiber bundle over B but also as a fiber bundle
E,K xg P over B,K. Let

(3.1) f.: E.P — B.K

be the bundle projection. Then L = fiT", t = f;7 defines a bundle gerbe
(P,L,1). A pseudo-line bundle for this bundle gerbe is equivalent to a lift
of the structure group to K : Indeed if P is a principal K -bundle hftmg P,
consider the associated bundle E = P><U(1)C From the action map K xP — P
one obtains an isomorphism I} ® E, = E ,, or equivalently a section s of
SE~!' @ L. One checks that s = ¢, so that (E,s) is a pseudo-line bundle.
Conversely, the bundle P is recovered as the unit circle bundle in E, and s
defines an action of K lifting the action of K. See Gomi [14] for a detailed
construction of bundle gerbe connections on (P, L,1).

REMARK 3.1. To obtain a Chatterjee-Hitchin gerbe from this bundle gerbe,
we must choose a cover I/ of M such that P is trivial over each U, € U/. Any
choice of trivialization gives a simplicial map UM — E.P, and we pull back
the bundle gerbe under this map. More directly, the local trivializations give
rise to a ’classifying map’ x.: UM — B.K (see [23]), and the Chatterjee-
Hitchin gerbe is defined as the pull-back of (I',7) under this map.

Suppose the group K is compact and connected. After pulling back to the
universal cover K, every central extension U(1) — K — K becomes trivial.
It follows that every central extension of K by U(1) is of the form

k\ = E ><7r1(K) U(l),

where m1(K) C K acts on U(1) via some homomorphism ¢ € Hom(m(K), U(1)).
The choice of p for a given extension is equivalent to the choice of a flat
| K -invariant connection on the principal U(1)-bundle K — K. The central
~ extension is isomorphic to the trivial extension if and only if p extends to
a homomorphism 2: K — U(1), and the choice of any such p is equivalent
- to a choice of trivialization. Using the natural map from (¢)X = Hom(K R)
~onto Hom(K U(1)) this gives an exact sequence of Abelian groups

| (3.2) (¢)* — Hom(m(K), U(1)) — {central extensions of K by U(1)} — 1.

Suppose K is semi-simple (so that (£8*)X = 0), and 7 is a maximal torus
in K. Let T C K be the maximal torus glven as the pre-image of T. Let
‘ AK,AK C t be the integral lattices of T, T. The lattice Ak 1s equal to the
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co-root lattice of K, and m1(K) = Ag /KK (cf. [6, Theorem V.7.1]). Therefore,
if K is semi-simple,

{central extensions of K by U(1)} = Hom(m (K), U(1)) = K}} /A%,

the quotient of the dual of the co-root lattice by the weight lattice.

PROPOSITION 3.2. Suppose K is a compact, connected Lie group and
m: P — M a principal K -bundle.

(a) Any p € Hom(m(K),U(1)) defines a bundle gerbe (P,L,t) over M,
together with a gerbe connection (V-,B) where B = 0. In particular this
gerbe is flat.

(b) If o is the image of p € (B*)X, there is a distinguished pseudo-
line bundle L = (E,s) for this gerbe, with E a trivial line bundle. Any
principal connection 0 € QY(P,%) defines a connection on L, with error
2-form w € Q*(M) given by T'w = <M,F9> € QX(M), where F® is the
curvature.

Proof. Let U(1) — K — K be the central extension defined by p, and
(I',7) the corresponding s1mp1101a1 gerbe over B,K. As remarked above, p
defines a flat connection on K — K, hence also a flat connection V' on
the line bundle I' — B;K. Then (V',0) is a connection on the simplicial
gerbe (I', 7). Pulling back under the map f. (cf. (3.1)) we obtain a connection
(VE,0) on the bundle gerbe (P,L,?).
If o is in the image of u € (£*)X, the corresponding trivialization of K
~ defines a unitary section o of I', with do = 7 and %T—ZVFJ = <u,9L>c7,
where 6" is the left-invariant Maurer-Cartan form on K. Thus £ = (E,s),
with E the trivial line bundle and s = f{"o, is a pseudo-line bundle for G.
Given a principal connection @, let V£ be the connection on the trivial bundle
E, having connection 1-form (u,0) € Q'(P). Since 5=Vks = fi{p,05) s, it
follows that

1
(3.3) %—i((w’f)*lvhs = (u,fi0" — 60).

One finds 070 = Ad.-1(950 — fr0%). Since p is K-invariant, this shows

that the right hand 31de of (3.3) vanishes. Thus V¥ is a pseudo-line bundle
connection. The error 2-form w is given by

w0 =d(u,6) = (4,d6) = (u, F’).
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All of these constructions can be made equivariant in a rather obvious way :
Thus if G is another Lie group and P is a G-invariant principal K-bundle,
any o € Hom(m(K),U(1)) defines a G-equivariant bundle gerbe (P,L,?)
(with flat connection) over M. If p is in the image of u € (¢)X, there is
a G-equivariant pseudo-line bundle for this gerbe. Furthermore any choice of
G-equivariant principal connection on P defines a G-equivariant pseudo-line
bundle connection, with equivariant error 2-form 7'wg = < M,Fg> where
F% € QL(P,¥) is the equivariant curvature.

4. GLUING DATA

In this Section we describe a procedure for gluing a collection of bundle
gerbes (X;,L;,t;) on open subsets V; C M, with pseudo-line bundles of
their quotients on overlaps?). We begin with the somewhat simpler case that
the surjective submersions X; — V; are obtained by restricting a surjective
submersion X — M, and later reduce the general case to this special case.

Thus, let m: X — M be a surjective submersion and let V;, i =0,...,d
an open cover of M. Let X; = X|y,, and more generally X; = X|y, where V;
1s the intersection of all V; with i € I.

Suppose we are given bundle gerbes (X;,L; t;) over V; and pseudo-
line bundles (Ej,s;) for the quotients (X, L;L; ', ;') over V;NV;, where
E; = E]f and s; = s;l. Note that Ej; Ejy Ey; is a pseudo-line bundle for
the trivial gerbe, hence is a pull-back 7*F;; of a line bundle Fj — M,
and we will also require a unitary section u;; of that line bundle. Under
suitable conditions the data (Ej;,s;) and u;; can be used to *glue’ the gerbes
(Xi, L;, t;). The glued gerbe will be defined over the disjoint union H?:1Xi-
We have

SN R
( J_Xz) = f | Xi Xum Xj
d

o Bl ++
(TT%) " = TT% xu X xu X,
=1 ijk

Hence, the glued gerbe will be of the form (I[, X;, [, Ly, [ Ly tin) where L
are line bundles over X; X X; and t;; unitary sections of a line bundle (OL)iji

2) See Stevenson [29] for similar gluing constructions.
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