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All of these constructions can be made equivariant in a rather obvious way :
Thus if G is another Lie group and P is a G-invariant principal K-bundle,
any o € Hom(m(K),U(1)) defines a G-equivariant bundle gerbe (P,L,?)
(with flat connection) over M. If p is in the image of u € (¢)X, there is
a G-equivariant pseudo-line bundle for this gerbe. Furthermore any choice of
G-equivariant principal connection on P defines a G-equivariant pseudo-line
bundle connection, with equivariant error 2-form 7'wg = < M,Fg> where
F% € QL(P,¥) is the equivariant curvature.

4. GLUING DATA

In this Section we describe a procedure for gluing a collection of bundle
gerbes (X;,L;,t;) on open subsets V; C M, with pseudo-line bundles of
their quotients on overlaps?). We begin with the somewhat simpler case that
the surjective submersions X; — V; are obtained by restricting a surjective
submersion X — M, and later reduce the general case to this special case.

Thus, let m: X — M be a surjective submersion and let V;, i =0,...,d
an open cover of M. Let X; = X|y,, and more generally X; = X|y, where V;
1s the intersection of all V; with i € I.

Suppose we are given bundle gerbes (X;,L; t;) over V; and pseudo-
line bundles (Ej,s;) for the quotients (X, L;L; ', ;') over V;NV;, where
E; = E]f and s; = s;l. Note that Ej; Ejy Ey; is a pseudo-line bundle for
the trivial gerbe, hence is a pull-back 7*F;; of a line bundle Fj — M,
and we will also require a unitary section u;; of that line bundle. Under
suitable conditions the data (Ej;,s;) and u;; can be used to *glue’ the gerbes
(Xi, L;, t;). The glued gerbe will be defined over the disjoint union H?:1Xi-
We have

SN R
( J_Xz) = f | Xi Xum Xj
d

o Bl ++
(TT%) " = TT% xu X xu X,
=1 ijk

Hence, the glued gerbe will be of the form (I[, X;, [, Ly, [ Ly tin) where L
are line bundles over X; X X; and t;; unitary sections of a line bundle (OL)iji

2) See Stevenson [29] for similar gluing constructions.
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over [ [, Xi XpuX; Xy X;. We will define L; by tensoring L; — X (restricted
to X; Xy X;) with the pull-back of Ej; under the map 0;: X; xy X; — Xj;.

PROPOSITION 4.1.  Suppose the sections wy, satisfy the cocycle condition
ujkluilluiﬂuij_.kl = 1, and the sections s satisfy a cocycle condition s;sjsy; = 1.
Then there is a well-defined gerbe (HiXi7Hilej7Hijk tix) over M, where
L — X; Xxu X; is the line bundle

Lj =1L ® O E;
and ty, is a section of (L) — Xi Xp X; Xy Xy given by
(4.1) ik = b @ 0355 @ 0507 " ujj .
Proof. A short calculation gives
(OLyjx = (6Li) ® 85 (LiLy 0B, ") © 0507w Fiy
showing that #;; is a well-defined section of (JL);x. One finds furthermore
(0D = (1) ® 05 (Z;tk_l(;S,;l ® 05 (sljsjkskl ® 5‘f‘7r*(ujklui;ll uiﬂui]—.kl)))
= 0;0; (sljsjkskl ® 0 W*(ujklui;ll u,jluij—.kl))

which equals 1 under the given assumptions on u and s.

The gluing construction described in this Proposition is particularly natural
for Chatterjee-Hitchin gerbes: Suppose U is an open cover of M, and
X = HUeu U. For any decomposition U = ]_[leui let V; = Upey, U, and
X; = UUeu,- U. Note that in this case,

[[x=x.
Suppose (L;,1;) are Chatterjee-Hitchin gerbes for the cover Uf; of V;, and that
we are given pseudo-line bundles (Ej;,s;) and a section u;; as above. Note
that the Ej; are a collection of line bundles over intersections U, N U, where
U, € U; and U, € U;. The gluing construction gives a Chatterjee-Hitchin
gerbe (L,?) for the cover U/ of M, where the Ej; enter the definition of
transition line bundles between open sets in distinct U4, U;.

REMARK 4.2. Suppose X = M, and that all L;,t;,s; are trivial. Then the
gerbe described in Proposition 4.1 is a Chatterjee-Hitchin gerbe for the cover
{Vi}. The E; now play the role of transition line bundles, and u;, play the
role of .




THE BASIC GERBE OVER A COMPACT SIMPLE LIE GROUP 321

Suppose now that, in addition to the assumptions of Proposition 4.1,
we have gerbe connections (V% B;) and pseudo-line bundle connections
VEi = (VE)~!. Let w; denote the error 2-form for VEi .

PROPOSITION 4.3. The connections Vi = Vi @ 0f Vi on Ly, together
with the two forms B; € Q*(X;), define a gerbe connection if all error 2-forms

wjj vanish, and if
VEi VEJ"‘VE""(W*uUk) =0.

Proof Let B be the 2-form on [[X; given by B; on X;. We first verify
that 5 curv(V:) = (0B); :
1 Lis 1 Ly L, E;
— curv(V™) = — curv(VY) + — 07 curv(V™7)
2 27 2
= 0B; + 07(B — B' + m*wy)
— O3B, — 0B; = (0B); .
Next, we check that f; is parallel for (§V5)y

(6VL)ijk = 86 ijaik(vl‘ik)_lﬁg VL,-j
= oVH ® 8;(va(vLj)_15ijk) ® 03 aik(injijkkai) _

This annihilates (4.1) as required.

We now describe a slightly more complicated gluing construction, in which
the X; are not simply the restrictions of a surjective submersion X — M.
Instead, we assume that for each I we are given a surjective submersion
7y Xy — V; are surjective submersions, and for each I D J a fiber preserving
smooth map f/: X; — X;, with the compatibility condition fX of/ = fX for
I D J D K. Our gluing data will consist of the following:

(i) Over each V;, bundle gerbes (X;,L;,t;) with connections (V% B;).

(i1) Over each Vj;, pseudo-line bundles E; = EJ;I iy = sﬁl with connections
VEi = (VE)~! for the bundle gerbe (Xj,Lj,t;), given as the quotient
of the pull-back of (X;, L;, ) by fl; and the pull-back of (X;, L;,t;) by 5
(iii) Over triple intersections, unitary sections uj of the line bundle
Fiye = Vg deﬁned by tensoring the pull-backs of Ej, Ey, Ey by

the maps f7, fé’;ﬁ .
We require that the s; and wu; satisfy a cocycle condition similar to
Proposition 4.1, that all error 2-forms wj; are zero, and that the connections

VEi satisfy a compatibility condition as in 4.3.
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These data may be used to define a bundle gerbe over M, by reducing
to the setting of Propositions 4.1, 4.3. As a first step we construct a more
convenient cover.

LEMMA 4.4. There are open subsets U; of M, with Uy C V;, and
U, Ur =M, such that
UNU;=@ unless JCIorIClJ.

The collection of open subsets
v, =M\ JT,
JFi
is a shrinking of the open cover V;, that is, |JV/ =M and V] C V.

The proof of this technical lemma is deferred to Appendix A. Now set
X =11, X;|y, . By definition of V;, the restriction X; = X|y, is given by

X = HXJlUJﬁV[ :
J3i
More generally, letting V; = (., V; and X; = X]|y; we have
X; = HXJIU,mv; -
JDI

Let X; — Xj|y» be the fiber preserving map, given on X;|y,ny; by the

map f7: X; — X;. Using these maps, we can pull-back our gluing data:

Let (X!,Li,#) be the pull-back of the bundle gerbe (X;,L;,#) under the
!

map X; — X;, equipped with the pull-back connection. On overlaps V;, we

let (E},s;) be the pseudo-line bundle with connections defined by pulling
back (Ej,s;). The gluing data obtained in this way satisfy the conditions
from Propositions 4.1 and 4.3, and hence give rise to a bundle gerbe with

connection over M.

REMARK 4.5. In our applications, the line bundles E; are in fact trivial,
so one can simply take u;z = 1 in terms of the trivialization. The s; are
U(1)-valued functions in this case, and the compatibility condition reads
SiiSikSki = 1 over X,'jk.

The gluing constructions generalize equivariant bundle gerbes in a straight-
forward way.
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