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114 A. PLAGNE

3. From Theorem 3 to Theorem 1

We first use the theorem of Eliahou and Kervaire (see Section 3 of [5]),
which states that if p is an arbitrary prime, r and s two integers, then

(3-1) ßP(r, s) ß(z/Pzy(r, s)

whenever pd > r, s.

Now, from Theorem 10 of [1], it follows that p,Q coincides with p,c as

soon as G and G' are two Abelian p -groups of the same order. In other

words,

(3-2) ß(z/Pz)d(r5 s) Mz/pdz(r>s) •

We would like to emphasize that from our method (more precisely, using

simply Lemma 1) together with an inductive argument (the quotient groups of
('ZijpT)d have the same form), we are able to derive a simple direct (that is,
without using [1]) alternative proof of (3.2). Indeed, the only thing to verify
is that if

(3.3) r + s - 1 < (\r/pk]+ - l)/
for any k > 1 then we can construct sets A and B of respective cardinalities

r and s with \A-\- B\ r + f — 1. This is achieved by taking for A
(resp. for B) the r (resp. the s) smallest possible elements in the sense

of the lexicographic order. Hypothesis (3.3) then ensures that, in this case,

\A + B\ r + s— 1.

We are now ready to prove Theorem 1. We put for instance d — r s

(but any sufficiently large d will do). Using consecutively (3.1), (3.2) and

Theorem 3, we obtain

ßp(r, s) p(z/pzy(r,
— lJ'Z/p<'z(r,s)

mm(|>/fl + -1

min (k/^H + ~ 1)pu
u<d

min ;•///' | + |'s/p"] -uen

which proves Theorem 3.
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