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36 - P. ETINGOF AND E. STRICKLAND

proofs are postponed until Lecture 3). In Lecture 2, we explain the origin of
the ring of quasi-invariants in the theory of integrable systems, and introduce
some tools from integrable systems, such as the Baker-Akhieser function.
Finally, in Lecture 3, we develop the theory of the rational Cherednik algebra,
the representation-theoretic techniques due to Opdam and Rouquier, and finish
the proofs of the geometric statements from Chapter 1.

1. LECTURE 1

1.1 DEFINITION OF QUASI-INVARIANTS

In this lecture we will define the ring of quasi-invariants @, and discuss
its main properties.

We will work over the field C of complex numbers. Let W be a finite
Coxeter group, i.e. a finite group generated by reflections. Let us denote by
b its reflection representation. A typical example is the Weyl group of a
semisimple Lie algebra acting on a Cartan subalgebra h. In the case the Lie
algebra is sl(n), we have that W is the symmetric group S, on n letters and
b is the space of diagonal traceless n x n matrices.

Let ¥ C W denote the set of reflections. Clearly, W acts on X by
conjugation. Let m: X — Z, be a function on X taking non negative integer
values, which is W-invariant. The number of orbits of W on X is generally
very small. For example, if W is the Weyl group of a simple Lie algebra of
ADE typé, then W acts transitively on X, so m is a constant function.

For each reflection s € X, choose «; € h* — {0} so that, for x € b,
os(sx) = —a(x) (this means that the hyperplane given by the equation oz = 0
is the reflection hyperplane for s).

DEFINITION 1.1 ([CV1, CV2]). A polynomial g € C[h] is said to be
m-quasi-invariant with respect to W if, for any s € X, the polynomial
g(x) — g(sx) is divisible by a(x)*™*1.

We will denote by Q,, the space of m-quasi-invariant polynomials with
respect to W.

Notice that every element of C[h] is a O-quasi-invariant, and that every
W -invariant is an m-quasi-invariant for any m. Indeed if g € C[H1¥, then
we have g(x) — g(sx) = 0 for all s € X, and O is divisible by all powers of
a,(x). Thus in a way, C[H]" can be viewed as the set of oo-quasi-invariants.
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EXAMPLE 1.2. The group W = Z/2 acts on h = C by s(v) = —v. In
this case m is a non negative integer and X = {s}. So this definition says
that ¢ is in O, iff g(x)—q(—x) is divisible by x*"'. It is very easy to write
a basis of 0,,. It is given by the polynomials {x* | i > 0} U {x**' | i > m}.

1.2 ELEMENTARY PROPERTIES OF Q,,

Some elementary properties of O, are collected in the following propo-
sition.

PROPOSITION 1.3 (see [FV] and references therein).

1) CHIY € Qn C Clhl, Qo = CIHl, QOnw C Qw if m =z m,
ﬂm Qm — C[h]W .

2) O, is a graded subalgebra of Clh].

3) The fraction field of Q,, is equal to C(h).

4 Q,, is a finite C[h]" -module and a finitely generated algebra. C[h] is a
finite Q,,-module.

Proof. 1) is immediate and has already been mentioned in 1.1.
2) Clearly Q,, is closed under addition. Let p,q € O,,. Let s € X. Then

p(0)q(x) — p(sx)q(sx) = (p(x) — p(sx))q(x) + p(sx)(g(x) — g(sx)) .
Since both p(x) — p(sx) and g(x) — g(sx) are divisible by a?™*!, we deduce

s

that p(x)g(x) — p(sx)q(sx) is also divisible by o™+, proving the claim.
3) Consider the polynomial

Samr1(®) = | T s+
SEX
This polynomial is uniquely defined up to scaling. One has dyy,+1(sx) =
—my1(x) for each s € X, hence dyut1 € O Take f(x) € C[h]. We claim
that f(x)dpms1(x) € Q.. As a matter of fact,

F)02my1(x) — f(sX)02mp-1(5%) = (f(x) + f(5x))02m41(x),

and by its definition 8, 1(x) is divisible by oy (x)*™T! for all s € X. This
implies 3).

4) By Hilbert’s theorem on the finiteness of invariants, we get that C[H]"V
is a finitely generated algebra over C and C[h] is a finite C[h]" -module and
hence a finite Q,,-module, proving the second part of 4).

Now Q,, C C[h] is a submodule of the finite module C[h] over the

Noetherian ring C[h]". Hence it is finite. This immediately implies that Q,,
is a finitely generated algebra over C. [
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REMARK. In fact, since W is a finite Coxeter group, a celebrated result
of Chevalley says that the algebra C[h]" is not only a finitely generated
C-algebra but actually a free (=polynomial) algebra. Namely, it is of the
form Clqy,...,q,], where the g; are homogeneous polynomials of some
degrees d;. Furthermore, if we denote by H the subspace of C[h] of harmonic
polynomials, i.e. of polynomials killed by W -invariant differential operators
with constant coefficients without constant term, then the multiplication
map

Ch1" ® H — C[h]

is an isomorphism of C[h]" - and of W-modules. In particular, C[h] is a free
C[5]"-module of rank |W]|.

1.3 THE VARIETY X,, AND ITS BUECTIVE NORMALIZATION

Using Proposition 1.3, we can define the irreducible affine variety
Xn = Spec(Qy,). The inclusion Q,, C C[h] induces a morphism

m:bh— X,

which again by Proposition 1.3 is birational and surjective. (Notice that in
particular this implies that X,, is singular for all m # 0.)
In fact, not only is 7 birational, but a stronger result 1s true.

PROPOSITION 1.4 (Berest, see [BEG]). 7 is a bijection.

Proof. By the above remarks, we only have to show that 7 is injective.
In order to achieve this, we need to prove that quasi-invariants separate points
of b, i.e. that if z,y € h and z # y, then there exists p € @, such that
p(z) # p(y). This is obtained in the following way. Let W, C W be the
stabilizer of z and choose f € C[h] such that f(z) # 0, f(y) = 0. Set

pwy= [] et ][ faw.
SEZX ,57F7 weW,

We claim that p(x) € Q,,. Indeed, let s € ¥ and assume that s(z) # z.
We have by definition p(x) = a,(x)*™"1p(x), with p(x) a polynomial. So

p(x) — p(sx) = a;(0)*™ M p(x) — a(s2)™™ T p(sx) = ()™ T (Bx) + plsx)) -

If on the other hand, sz = z, i.e. s € W,, then s preserves the set
W\ W,, and hence preserves HséZﬂ(W\Wz) a,(x)?™t1 (as it acts by —1 on the

products [T oy os(0)*™+! and [[icpqw, as@)?™*). Since [,y fwx) is
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W, -invariant, we deduce that p(x) —p(sx) = 0, so that in this case p(x) — p(sx)
also is divisible by o(x)*™ T,

To conclude, notice that p(z) # 0. Indeed, for a reflection s, a; vanishes
exactly on the fixed points of s, so that HSEZ,SZ 22 ay(z)?mt £ 0, Also for all
w e W, flwz) =f(z) #0. On the other hand, it is clear that p(y) =0. [

EXAMPLE 1.5. Take W = Z/2. As we have already seen, O, has a
basis given by the monomials {x* | i > 0} U {x**! | i > m}. From this we
deduce that setting z = x* and y = x*"t!, 0,, = Cly,zl/(* —2%"*!) = C[K],
where K is the plane curve with a cusp at the origin, given by the equation
y2 = 72"t1 The map 7: C — K is given by n(t) = (#*"',#*), which is
clearly bijective.

1.4 FURTHER PROPERTIES OF X,

Let us get to some deeper properties of quasi-invariants. Let X be an
irreducible affine variety over C and A = C[X]. Recall that, by the Noether
Normalization Lemma, there exist fi,...,f, € C[X] which are algebraically
independent over C and such that C[X] is a finite module over the polynomial

ring C[fi,...,f,]. This means that we have a finite morphism of X onto an
affine space.

DEFINITION 1.6. A (and X) is said to be Cohen-Macaulay if there exist
fi,-..,fn as above, with the property that C[X] is a locally free module over

Clfi,...,fx]. (Notice that by the Quillen-Suslin theorem, this is equivalent to
saying that A is a free module.)

REMARK. If A is Cohen-Macaulay, then for any fi,...,f, which are
algebraically independent over C and such that A is a finite module over the

polynomial ring C[fj,...,f,], we have that A is a locally free C[fi,...,f.]-
module, see [Fis], Corollary 18.17.

THEOREM 1.7 ([EG2], [BEG], conjectured in [FV]). Q,, is Cohen-
Macaulay.

Notice that, using Chevalley’s result that C[h]" is a polynomial ring, it
will suffice, in order to prove Theorem 1.7, to prove:

THEOREM 1.8 ([EG2, BEG], conjectured in [FV]). Q,, is a free C[h]V -
module.
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We show how one can prove this Theorem in 3.10. This proof follows
[BEG] (the original proof of [EG2] is shorter but somewhat less conceptual).
The main idea of the proof is to show that the C[H]" -module Q,, can
be extended to a module over a bigger (noncommutative) algebra, namely
the spherical subalgebra of the rational Cherednik algebra. Furthermore, this
module belongs to an appropriate category of representations of this algebra,
called category . On the other hand, it can be shown that any module over
the spherical subalgebra that belongs to this category is free when restricted
to the commutative algebra C[h]" .

1.5 THE POINCARE SERIES OF Q,,

Consider now the Poincaré series

ho, () =) dim Q[

r>0

where Q,,[r] denotes the graded component of Q,, of degree r. For every
irreducible representation 7 € W, define g

X&) =) _ dim Homyy (r, C[H1[])?" .
r>0

Consider the element in the group ring Z[W]

Hm = st(l —5).

SEX

The W-invariance of m implies that u,, lies in the center of Z[W]. Hence
it is clear that u, acts as a scalar, &,(7), on 7. Let d. be the degree of 7.

LEMMA 1.9. The scalar &,(7) is an integer.

Proof. Z[W] and hence also its center, 1S a finite Z-module. This clearly
implies that &,(r) is an algebraic integer. Thus to prove that &,(7) is an
integer, it suffices to see that ¢,(7) is a rational number. Let d.; be the
dimension of the space of s-invariants in 7. Taking traces we get

d-bn() =) 2m(d, —dy ),

SEX

which gives the rationality of &,(7). L]
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THEOREM 1.10. One has

(1) ho, () =Y d1"Dx.(0).

TEW\

REMARK. This theorem was proved in [FeV] modulo Theorem 1.7
(conjectured in [FV]) using the so-called Matsuo-Cherednik correspondence
(see [FeV] for details). Thus, Theorem 1.10 follows from [FeV] and [EG2].
Another proof of this theorem is given in [BEG]; this is the proof we will
discuss below (in Lecture 3).

EXAMPLE 1.11. If m =0, since Qy = Cl[h], the theorem says that

1
hoy(t) = T = 2 (@)
TeWw

Indeed, as a W-module one has

Clhl = &,7 @ Homw (7, C[h]) .

EXAMPLE 1.12. If W = Z/2, then W = {+, -}, where + (respec-
tively —) denotes the trivial (respectively the sign) representation. One has

Clx] = C[x*] & C[**]x,

where C[x*] = C[x]" and C[x*]x is the isotypic component of the sign
representation. Thus

r

1
[) —m — () = ——
X+() 1_t27 X() 1 _2°

tm = m(l —s). Thus &,(+) =0, £,(—) = 2m. We deduce that

TR e SRR e s A RE R Y 0l 0 TR DS, SMUME

as we already know.

Recall now that as a graded W-module C[h] is isomorphic to C[HIY @ H,
H being the space of harmonic polynomials. We deduce that the T -1sotypic
component in C[h] is isomorphic to C[h]" @ H., .
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Set K.(t) = Zrzo dim Homyy (7, H[r])¢". This is a polynomial, called the
Kostka polynomial relative to 7. We deduce that

B K. (1)
x- () = (=

(2)

Also, if 7" =7®c¢, ¢ being the sign representation, one has

K. () =K. D,

Set now
P, = Z d, "MK (7).
TEﬁ/\
We have
PROPOSITION 1.13 ([FeV]).
P(1)
ho (1) = .
=0 L)

Furthermore P, (1) = ts»@+Ep, =1,

Proof. Substituting the expression (2) for x-(¢) in (1.10) and using the
definition of P,(f), we get

K- (1) Py (1)

ho, () = Y  d ™ = ,
Qm( ) %V\ H7:1(1 _ l‘di) H?:l(l — td,')

as desired.
Now notice that

En(T) + En(™) = 2my = &(e).
SEX
Using this we get
tgm(g)‘f‘lzlpm(t—]) — Z dTt&m(e)_é-m("-)t'leT(t_1)
TEW\

= Z dT’ZSm(TI)KT’(t) — Pm(t) )
rew

as desired. ]
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From this we deduce

THEOREM 1.14 ([EG2, BEG, FeV], conjectured in [FV]). The ring Opn
of m-quasi-invariants is Gorenstein.

Proof. By Stanley’s theorem (see [Eis]), a positively graded Cohen-
Macaulay domain A is Gorenstein iff its Poincaré series is a rational function
h(t) satisfying the equation h(t~') = (—1)"f'h(f), where [ is an integer and n
is the dimension of the spectrum of A. Thus the result follows immediately
from Proposition 1.13. [

1.6 THE RING OF DIFFERENTIAL OPERATORS ON X,,

Finally, let us introduce the ring D(X,,) of differential operators on X,,,
that is the ring of differential operators with coefficients in C() mapping Q,,
to Q,,. It 1s clear that this definition coincides with Grothendieck’s well-known
definition ([Bj]).

THEOREM 1.15 ([BEG]). D(X,,) is a simple algebra.

REMARK 1.16. a) The ring of differential operators on a smooth affine
algebraic variety 1s always simple (see [Bj], Chapter 3).

b) By a result of M. van den Bergh [VdB], for a non-smooth variety, the
simplicity of the ring of differential operators implies the Cohen-Macaulay
property of this variety.

2. LECTURE 2

We will now see how the ring O, appears in the theory of completely
integrable systems.

2.1 HAMILTONIAN MECHANICS AND INTEGRABLE SYSTEMS

Recall the basic setup of Hamiltonian mechanics [Ar]. Consider a mechan-
ical system with configuration space X (a smooth manifold). Then the phase
space of this system is 7"X, the cotangent bundle on X. The space T*X
is naturally a symplectic manifold, and in particular we have an operation
of Poisson bracket on functions on 7*X. A point of 7*X is a pair (x,p),
where x € X is the position and p € TX is the momentum. Such pairs are
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