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36 P. ETINGOF AND E. STRICKLAND

proofs are postponed until Lecture 3). In Lecture 2, we explain the origin of
the ring of quasi-invariants in the theory of integrable systems, and introduce

some tools from integrable systems, such as the Baker-Akhieser function.

Finally, in Lecture 3, we develop the theory of the rational Cherednik algebra,
the representation-theoretic techniques due to Opdam and Rouquier, and finish
the proofs of the geometric statements from Chapter 1.

1. Lecture 1

1.1 Definition of quasi-invariants

In this lecture we will define the ring of quasi-invariants Qm and discuss

its main properties.
We will work over the field C of complex numbers. Let W be a finite

Coxeter group, i.e. a finite group generated by reflections. Let us denote by
I) its reflection representation. A typical example is the Weyl group of a

semisimple Lie algebra acting on a Cartan subalgebra f). In the case the Lie
algebra is si(«), we have that W is the symmetric group Sn on n letters and

\) is the space of diagonal traceless n x n matrices.

Let X C W denote the set of reflections. Clearly, W acts on X by
conjugation. Let m : X —» Z+ be a function on X taking non negative integer
values, which is W-invariant. The number of orbits of W on X is generally

very small. For example, if W is the Weyl group of a simple Lie algebra of
ADE type, then W acts transitively on X, so m is a constant function.

For each reflection s G X, choose as E f}* — {0} so that, for x G I),

as(sx) —as(x) (this means that the hyperplane given by the equation as 0

is the reflection hyperplane for s).

Definition 1.1 ([CV1, CV2]). A polynomial q E C[f)] is said to be

m-quasi-invariant with respect to W if, for any s E X, the polynomial
q(x) - q(sx) is divisible by as(x)2rrlsJrl.

We will denote by Qm the space of m-quasi-invariant polynomials with

respect to W.

Notice that every element of C[f)] is a 0-quasi-invariant, and that every
W-invariant is an m-quasi-invariant for any m. Indeed if q e C[f)]w, then

we have q(x) - q(sx) 0 for all s E X, and 0 is divisible by all powers of
as(x). Thus in a way, C[l)]w can be viewed as the set of oo-quasi-invariants.
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Example 1.2. The group W — Z/2 acts on C by s(u) — v. In

this case m is a non negative integer and E {s}. So this definition says

that £ is in Qm iff q(x)-q(-x) is divisible by x2m+1. It is very easy to write

a basis of Qm. It is given by the polynomials {x2t \ i> 0} U {x2l+l \i>m}.

1.2 Elementary properties of Qm

Some elementary properties of Qm are collected in the following proposition.

Proposition 1.3 (see [FV] and references therein).

1) cmw C Qm c C[f)], ßo C[fj], Qm C Qm' if m > m',

nmö»-cr.
2) Qm w graded subalgebra of C[f)].

3) The fraction field of Qm is equal to C(f)).

4) Qm is a finite C[f)]w -module and a finitely generated algebra. C[()] is a

finite Qm-module.

Proof. 1) is immediate and has already been mentioned in 1.1.

2) Clearly Qm is closed under addition. Let p,q G Qm. Let s G S. Then

p(x)q{x) - p{sx)q(sx) (p{x) - p{sx))q{x) + p(sx)(q(x) - q{sx)).

Since both p(x) - p(sx) and q(x) - q(sx) are divisible by a]Ms+l, we deduce

that p(x)q(x) - p(sx)q(sx) is also divisible by a2ms+l, proving the claim.

3) Consider the polynomial

This polynomial is uniquely defined up to scaling. One has Ô2m+i(sx) —

—Ö2m+ iW f°r ea°h s e X, hence ö2m+i C Qm. Take /(x) G C[f)]. We claim
that f{x)52m+ iW G Qm. As a matter of fact,

I /(V)52m+1 (X) ~ f(sx)Ö2m+1 (sx) (f(x) + f(sx))Ô2m+1 (x)

and by its definition ô2m+\ (x) is divisible by as(x)2msJrl for all s G £. This

implies 3).

j 4) By Hilbert's theorem on the finiteness of invariants, we get that C[f)]w
j

is a finitely generated algebra over C and C[(j] is a finite C[f)]w-module and

\ hence a finite Qm -module, proving the second part of 4).
I Now Qm C C[f)] is a submodule of the finite module C[f)] over the
j Noetherian ring C[ï)]w. Hence it is finite. This immediately implies that Qm

j is a finitely generated algebra over C.
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Remark. In fact, since W is a finite Coxeter group, a celebrated result |

of Chevalley says that the algebra C[f)]w is not only a finitely generated j

C-algebra but actually a free polynomial) algebra. Namely, it is of the

form C[#i,... ,#n], where the qt are homogeneous polynomials of some

degrees dt. Furthermore, if we denote by H the subspace of C[f)] of harmonic j'

polynomials, i.e. of polynomials killed by W-invariant differential operators \

with constant coefficients without constant term, then the multiplication I

map j

cihlu -cihi I

is an isomorphism of C[i)]w- and of W7-modules. In particular, C[f)] is a free

C[f}]v|/-module of rank |W|. I

1.3 The variety Xm and its bijective normalization j

Using Proposition 1.3, we can define the irreducible affine variety j

Xm Spec(gm). The inclusion Qm C C[f)] induces a morphism |

t : ï) y xm, I

which again by Proposition 1.3 is birational and surjective. (Notice that in j

particular this implies that Xm is singular for all m ^ 0.) j

In fact, not only is ir birational, but a stronger result is true. Î

Proposition 1.4 (Berest, see [BEG]), n is a bijection.

Proof. By the above remarks, we only have to show that 7r is injective. j

In order to achieve this, we need to prove that quasi-invariants separate points
of f), i.e. that if z,y f) and r / y then there exists p G Qm such that j

p(z) ^ piy). This is obtained in the following way. Let Wz C W be the j

stabilizer of z and choose / G C[f)] such that f(z) / 0, f(y) 0. Set

p(x)=[J as(x)2m>+1 n f(wx).
.sCX isz^z w£Wz

We claim that p(x) e Qm. Indeed, let s EX and assume that s(z) ^ z.

We have by definition p{x) as(x)2ms+lp(x), with p(x) a polynomial. So j

p(x) - p(sx) as{.x)2ms+lp(x) - as(sx)2ms+lp(sx) as(x)2ms+l (p(x) + p(sx)). j

If on the other hand, sz z, i.e. s G Wz, then s preserves the set j

W\WZ, and hence preserves FI^2:n(w\wz) &s(x)2ms+1 (as it acts by -1 on the

products Usezas(x)2m^1 and ^S(x)2ms+l Since Y[weWzf(wx) is
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Wz -invariant, we deduce that p(x)-p(sx) 0, so that in this case p(x) -p(sx)
also is divisible by as(x)2ms+l.

To conclude, notice that p(z) 0. Indeed, for a reflection s, as vanishes

exactly on the fixed points of s9 so that Y\s^sz^zas(z)2ms+l y^ 0. Also for all

w eWz f(wz) =f(z) y^ 0. On the other hand, it is clear that p(y) =0.

Example 1.5. Take W Z/2. As we have already seen, Qm has a

basis given by the monomials {xZl \ i > 0} U {x2l+l \ i > m}. From this we

deduce that setting z x2 and y x2m+i
^ zy _ ^m+iy _ q[jq 5

where K is the plane curve with a cusp at the origin, given by the equation

y2 z2m+1. The map it: C -ï K is given by tt(t) (t2m+\t2), which is

clearly bijective.

I 1.4 Further properties of Xm

J Let us get to some deeper properties of quasi-invariants. Let X be an
J irreducible affine variety over C and A C[X]. Recall that, by the Noether

I Normalization Lemma, there exist f\,... G C[X] which are algebraically
j independent over C and such that C[X] is a finite module over the polynomial
j ring C[/i,... ,/„]. This means that we have a finite morphism of X onto an

] affine space.

j Definition 1.6. A (and X) is said to be Cohen-Macaulay if there exist
j f\.... Jn as above, with the property that C[X] is a locally free module over
I C[/i,... Jn\, (Notice that by the Quillen-Suslin theorem, this is equivalent to
j saying that A is a free module.)

Remark. If A is Cohen-Macaulay, then for any /],... Jn which are

algebraically independent over C and such that A is a finite module over the

polynomial ring C[/i, we have that A is a locally free C\f\,... Jn] -
j module, see [Eis], Corollary 18.17.

.j Theorem 1.7 ([EG2], [BEG], conjectured in [FV]). Qm is Cohen-
Macaulay.

j j Notice that, using Chevalley's result that C[l)]w is a polynomial ring, it
I will suffice, in order to prove Theorem 1.7, to prove:

jj Theorem 1.8 ([EG2, BEG], conjectured in [FV]). Qm is a free C[l)]w-
I module.
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We show how one can prove this Theorem in 3.10. This proof follows
[BEG] (the original proof of [EG2] is shorter but somewhat less conceptual).
The main idea of the proof is to show that the C[f)]w -module Qm can
be extended to a module over a bigger (noncommutative) algebra, namely
the spherical subalgebra of the rational Cherednik algebra. Furthermore, this

module belongs to an appropriate category of representations of this algebra,
called category O. On the other hand, it can be shown that any module over
the spherical subalgebra that belongs to this category is free when restricted
to the commutative algebra C[l)]w.

1.5 The Poincaré series of Qm

Consider now the Poincaré series

hQ,„(t) =a Y dim Qm[r]t'
r>0

where Qm[r] denotes the graded component of Qm of degree r. For every
irreducible representation r eW, define

Xr(t)Y dim Horniv(r, C[ï)][r])f
r>0

Consider the element in the group ring Z[W]

Mm

The W-invariance of m implies that iim lies in the center of Z[W]. Hence

it is clear that fim acts as a scalar, £m(r), on r. Let dT be the degree of r.

Lemma 1.9. The scalar £m(r) is an integer.

Proof. Z[W] and hence also its center, is a finite Z-module. This clearly
implies that £m(r) is an algebraic integer. Thus to prove that £m(r) is an

integer, it suffices to see that £m(r) is a rational number. Let dT^s be the

dimension of the space of s-invariants in r. Taking traces we get

^T^mC7") — ^ 2nis{dT dT)S),

which gives the rationality of £m(r).
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Theorem 1.10. One has

(1) hQm(t) dTMT)xT{t).

rew

Remark. This theorem was proved in [FeV] modulo Theorem 1.7

(conjectured in [FV]) using the so-called Matsuo-Cherednik correspondence
(see [FeV] for details). Thus, Theorem 1.10 follows from [FeV] and [EG2].
Another proof of this theorem is given in [BEG] ; this is the proof we will
discuss below (in Lecture 3).

Example 1.11. If m — 0, since Qo C[fj], the theorem says that

hQM —
^ ^Vr(0 •

rew

Indeed, as a IT-module one has

Cm ©rT 0 Hornw(r, C[l}]).

Example 1.12. If IT Z/2, then IT — {+,—}, where + (respectively

-) denotes the trivial (respectively the sign) representation. One has

C[x] C[x2] ® C

where C[x2] C[x]wandC[x2]x is the isotypic component of the sign
representation. Thus

X+(0 ~ I — t2 ' X-(0 ~
Y — t2 '

hm — m(l — s). Thus £m(+) 0, £,„(—) 2m. We deduce that

1 ^2m+1

as we already know.

Recall now that as a graded IT-module C[fj] is isomorphic to C[f)]w(g)Z/,
H being the space of harmonic polynomials. We deduce that the t -isotypic
component in C[f)] is isomorphic to C[fj]w0tfr.
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Set Kr(t) — ^r>0 dim Horner, #[r])f. This is a polynomial, called the

Kostka polynomial relative to r. We deduce that

m tA KAt)
(2) Xr(t)

Also, if r' — t 0 e, e being the sign representation, one has

Kr,(t) Kr(r1)/|z|

Set now

Pm(t) Y,
t£W

We have

Proposition 1.13 ([FeV]).

Pm{t)
hQm(t) riLid^)'

Furthermore Pm(t) t^n^+^Pm{t~l).

Proof. Substituting the expression (2) for Xrif) in (1.10) and using the

definition of Pm(0, we get

«a.w - Y tn-=id-do'tGW

as desired.

Now notice that

CraC7") T ^m(r — ^ ^ 2t7Î| •

Using this we get

rGW

Y dT,MT,)Kr,(t)=pm{t),

r'ew

as desired.
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From this we deduce

Theorem 1.14 ([EG2, BEG, FeV], conjectured in [FV]). The ring Qm

of m-quasi-invariants is Gorenstein.

Proof By Stanley's theorem (see [Eis]), a positively graded Cohen-

Macaulay domain A is Gorenstein iff its Poincaré series is a rational function

hit) satisfying the equation h(t~x) (—l)ntlh(t), where / is an integer and n

is the dimension of the spectrum of A. Thus the result follows immediately
from Proposition 1.13.

1.6 The ring of differential operators on Xm

Finally, let us introduce the ring V(Xm) of differential operators on Xm,
that is the ring of differential operators with coefficients in C(fj) mapping Qm

to Qm. It is clear that this definition coincides with Grothendieck's well-known
definition ([Bj]).

I Theorem 1.15 ([BEG]). V(Xm) is a simple algebra.

I

j Remark 1.16. a) The ring of differential operators on a smooth affine
I algebraic variety is always simple (see [Bj], Chapter 3).

j b) By a result of M. van den Bergh [VdB], for a non-smooth variety, the

| simplicity of the ring of differential operators implies the Cohen-Macaulay
j property of this variety.

i
j 2. Lecture 2

\

j We will now see how the ring Qm appears in the theory of completely
j integrable systems.
j
I
I 2.1 Hamiltonian mechanics and integrable systems
I
I Recall the basic setup of Hamiltonian mechanics [Ar], Consider a mechan-
I ical system with configuration space (a smooth manifold). Then the phase

space of this system is T*X,the cotangent bundle on X. The space T*X
is naturally a symplectic manifold, and in particular we have an operation
of Poisson bracket on functions on A point of T'X is a pair
where x G X is the position and p £ T*X is the momentum. Such pairs are

i
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