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324 E. MEINRENKEN

5.2 The basic 3-form on G

Let 0L1 0R G Ql(G: g) be the left- and right-invariant Maurer-Cartan forms

on G, respectively. The 3-form rj G £23(G) given by3)

v -^eL-[öL,oLl ^oR-[dR,eR]

is closed, and has a closed equivariant extension t\q g Qg(G) given by

Vg(0 :^n-l(0L + 0R)-Ç.

Their cohomology classes represent generators of 773(G, Z) Z and

Hq(G, Z) Z, respectively. The pull-back of ï]g to any conjugacy class

Lc : C ^ G is exact. In fact, let ujc ß2(ri)G C Q^(C) be the invariant
2-form given on generating vector fields f°r ^ 0 hy the formula

Wc(&(0). &(<?)) ^ • (Adff - Adfl-.)e'.

Then [1, 16]

dG wc + i-cVg 0.

We will now show that tjq is exact over each of the open subsets Vj. Let

Cj q~l{ßj) c Vj be the conjugacy classes corresponding to the vertices.

LEMMA 5.1. The linear retraction

[0,1] x 21j —^ 21j: (f, fij + £) ha ßj + (1 — t) C

of 21j onto the vertex ßj lifts uniquely to a smooth G-equivariant retraction

from Vj onto Cj.

Proof Recall that the slice Sj is an open neighborhood of exp(p/)
in Gj. Any Gj -equivariant retraction from Sj onto exp ßj extends uniquely
to a G-equivariant retraction from Vj — G xGj Sj onto Cj. Note that
S- Gj. (21j - ßj) is a star-shaped open neighborhood of 0 in §, and that

Sj -A Sj, Ç —y exp(ßj) exp(0 is a Gj -equivariant diffeomorphism. The linear
retraction of Sj onto the origin gives the desired retraction of Sj. Uniqueness
is clear, since the retraction has to preserve exp(2ly) C Vj, by equivariance.

3) For g -valued forms ß\,ß2, the bracket denotes the g-valued form obtained by
applying the Lie bracket [•,•] : g (g) g g to the g (8) g-valued form ft A ßi.



THE BASIC GERBE OVER A COMPACT SIMPLE LIE GROUP 325

Let

hj : QFÇVj) -A QP([0,1] x Vj) -A QP~l(Vj)

be the de Rham homotopy operator for this retraction, given (up to a sign)

by pull-back under the retraction, followed by integration over the fibers of

[0,1] x Vj -A Vj. It has the property

(5.1) dG hj + hj dG Id -7r*lJ

where p: Cj -A Vj is the inclusion and wf Vj G xGj Sj -A G/Gj Cj the

projection. Let (Wj)G hjrjG - tt/coCj G ßG(V/), and write (wj)G Wj - 4^
where zuj G Q2(Vj) and 4^ G QP(Vj,$).

PROPOSITION 5.2. The equivariant 2-form (wj)G tu/ - 4^ has the

following properties.

(a) dG(tuy)G rjG.

(b) 77ze pull-back of (wj)G to a conjugacy class C C Vj is given by

Gc(wj)G 4/*(^c>)G -
where (<jüq)g is the equivariant symplectic form on the adjoint orbit
Ö 4*;(C),

(c) 27ze pull-back of 4*y to £/z<? conjugacy class Cj vanishes. In fact,

(expO £ - hj for all Ç G 2ly.

(d) Ov^r eac/z intersection Vy V, Fl V/, f/ze difference 4^ — 4^ takes

values in the adjoint orbit Oy through pj — pt G 0 0*. Furthermore,

(Wj)G - (vJi)G —p*j(tüOy)G

where p%: -A (9/y z'.v //z<? map defined by 4^ — 4^, azzd ((Jo<;/)G zT /7ze

equivariant symplectic form on the orbit.

Proof, (a) holds by construction, (b) follows from the observation that

i*c(voj)G -Vujc is an equivariantly closed 2-form on Cj, with 4*y as its moment

map. To prove (c) we note that since the retraction is equivariant, we have

hy o (exp 1^.)* (exp l^)* o hy where (exp l^.)* is pull-back to 21y c t and

where hy is the homotopy operator for the linear retraction of t onto {pj}.
Let v\ 2ly -A t be the coordinate function (inclusion). Then

hj o (exp\sij)*y9L +9r)î=h,- o d v ßj,

proving that (exp |aJ)*T v - fij. This yields (c), by equivariance. For
v G 21 ij we have, using (c),
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OF; - 4//-)(exp v) (v - ßi) - (v - ßj) ßj - Hi.

By equivariance, it follows that 4^ — 4^ takes values in the adjoint orbit
through fij — ßi. The difference wt — Wj vanishes on the maximal torus T,
and is therefore determined by its contractions with generating vector fields.
Since 4*, — 4^ is a moment map for w-L - zuj, it follows that wt - vjj equals
the pull-back of the symplectic form on G. (ßj - ßi).

5.3 The special unitary group

For the special unitary group G SlJ(d +1), the construction of the
basic gerbe simplifies due to the fact that in this case all vertices ßj of the

alcove are contained in the weight lattice. In fact the gerbe is presented as a

Chatterjee-Hitchin gerbe for the cover V {Vi, i 0,.. d}.
For each weight ß G A* C t C g, let Gß be its stabilizer for the adjoint

action and let CM the 1-dimensional GM -representation with infinitesimal
character ß. Let the line bundle Lß — G xG^ Cß equipped with the unique
left-invariant connection V. Then is a G-equivariant pre-quantum line
bundle for the orbit O G. ß. That is,

i
— curvG(V) (cjo)g :=üjö -®o2ir

where ujq is the symplectic form and Oq : 0 s g* is the moment map
given as inclusion.

In particular, in the case of SU(d +1) all orbits Oij G. {ßj — ßi) carry
G-equivariant pre-quantum line bundles. Recall the fibrations pij : Vy —> Oy
defined by 4— 4^, and let

Lv=pßLliJ-IM),

equipped with the pull-back connection. For any triple intersection Vyk

G x Gijk Sijk, the tensor product (SL)^ LjkL~k Ly is the pull-back of the line
bundle over G/Gp, defined by the zero weight

(ßk ~ ßj) - (ßk ~ ßi) + (ßj ~ ßi) 0

of Gijk- It is hence canonically trivial, with (SV)ijk the trivial connection.

The trivializing section — 1 satisfies St 1 and (SV)t 0. Take

(Bj)g (^j)c • Then

(Bjh~(Bih fajh ~ (œÙG curvG(V£") •

Thus Q — (V, L, t) is a equivariant gerbe with connection (V,B). Since
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