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324 E. MEINRENKEN

5.2 THE BASIC 3-FORM ON G

Let 60X, 6% ¢ Q!(G, g) be the left- and right-invariant Maurer-Cartan forms
on G, respectively. The 3-form n € Q3(G) given by?)

AT A UL I T N
n= 50" 10,6 = 6% - [6%, 6"
is closed, and has a closed equivariant extension 7 € Q2(G) given by

n6(€) =1 — 30" +6%) - €.

Their cohomology classes represent generators of H°(G,Z) = Z and
H}(G,Z) = Z, respectively. The pull-back of 7 to any conjugacy class
te: C — G is exact. In fact, let we € Q*(C)° C QZ(C) be the invariant
2-form given on generating vector fields &:,&, for £,&' € g by the formula

we€e(9), €e(9)) = 5€ - (Adg — Ady-1)E'.

Then [1, 16]

dgwe + tene = 0.

We will now show that 7 is exact over each of the open subsets V;. Let
C; =g~ '(u) C V; be the conjugacy classes corresponding to the vertices.

LEMMA 5.1. The linear retraction
[Oal]XQ[j'_)Q(ja (f,/L]+C)F——>[LJ+(1—I)C

of 2; onto the vertex p; lifts uniquely to a smooth G-equivariant retraction
from V; onto C;.

L

Proof. Recall that the slice S; is an open neighborhood of exp(u;)
in Gj. Any Gj-equivariant retraction from S; onto expp; extends uniquely
to a G-equivariant retraction from V; = G Xg, §; onto C;. Note that
S]’- = G;.(; — ;) is a star-shaped open neighborhood of 0 in g;, and that
S]’. — S;, ¢+ exp(u;) exp(¢) is a Gj-equivariant diffeomorphism. The linear
retraction of S]’- onto the origin gives the desired retraction of §;. Uniqueness
is clear, since the retraction has to preserve exp(2l;,) C V;, by equivariance.

3) For g-valued forms Bi, B2, the bracket [, 3;] denotes the g-valued form obtained by
applying the Lie bracket [-,-]: g® g — g to the g ® g-valued form G A 3.
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Let
hy: QP(V) — ([0, 1] x V) = &~1(V))

be the de Rham homotopy operator for this retraction, given (up to a sign)
by pull-back under the retraction, followed by integration over the fibers of
[0,1] x V; = V;. It has the property

(5.1) dGhj+hjdG —=1Id —WJTFL;

where 1;: C; — V; is the inclusion and mj: V; = G xg, S = G/G; = ; the
projection. Let (wj)g = hing — mfwe, € Q&(V)), and write (w))g = wj — ¥
where w; € Q2(VJ~) and ¥, € QO(Vj,g).

PROPOSITION 5.2. The equivariant 2-form (w)g = w; — ¥; has the
following properties.

(@) do(m)) = nc-

(b) The pull-back of (w))g to a conjugacy class C C V; is given by

e(wp)e = ¥} (wo)e — we
where (wo)g is the equivariant symplectic form on the adjoint orbit
O =Y¥,),
(c) The pull-back of ¥; to the conjugacy class C; vanishes. In fact,
Wiexp&) =& — py; for all § € ;.
(d) Over each intersection Vi = V;N'V;, the difference ¥; —¥; takes
values in the adjoint orbit Oy through p; — p; € g = g*. Furthermore,

(@) — (@6 = —p;(wo,)c

where p;: Vi — Oy is the map defined by Y; —Y¥;, and (wo,)c is the
equivariant symplectic form on the orbit.

Proof. (a) holds by construction. (b) follows from the observation that
Li(wj)G +we 1is an equivariantly closed 2-form on C;, with ¥; as its moment
map. To prove (c) we note that since the retraction is equivariant, we have
h; o (exP |21,)* = (exp |a,)* o h; where (exp|g,)* is pull-back to 2; C t and
where h; is the homotopy operator for the linear retraction of t onto {}.
Let v: 2; — t be the coordinate function (inclusion). Then

ﬁjO(GXp|Q[j)*'21‘(9L—|—9R):fljod]/: V_/'['ja

proving that (exp|g,)*¥; = v — ;. This yields (c), by equivariance. For
v € 2; we have, using (c),
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Wi —W(expv) = (v — ) — (v — ) = 15 — i -

By equivariance, it follows that W¥; — '¥; takes values in the adjoint orbit
through p; — p;. The difference w; — w,; vanishes on the maximal torus T,
and is therefore determined by its contractions with generating vector fields.
Since W¥; —¥; is a moment map for w; — w;j, it follows that w; — w; equals
the pull-back of the symplectic form on G. (1 — ).

5.3 THE SPECIAL UNITARY GROUP

For the special unitary group G = SU(d + 1), the construction of the
basic gerbe simplifies due to the fact that in this case all vertices y; of the
alcove are contained in the weight lattice. In fact the gerbe is presented as a
Chatterjee-Hitchin gerbe for the cover V ={V;, i=0,...,d}.

For each weight € A* CtC g, let G, be its stabilizer for the adjoint
action and let C, the 1-dimensional G, -representation with infinitesimal
character p. Let the line bundle L, = G x¢, C, equipped with the unique
left-invariant connection V. Then L, is a G-equivariant pre-quantum line
bundle for the orbit O = G. . That is,

i
7 curvg(V) = (wo)g := wo — Do
T

where wep is the symplectic form and ®p: O — g* is the moment map
given as inclusion.

In particular, in the case of SU(d + 1) all orbits O;; = G . (j — ;) carry
G-equivariant pre-quantum line bundles. Recall the fibrations p;: Vi — Oy
defined by ¥; —'¥;, and let

Ll] = p; (L/,Lj—ui) ’

equipped with the pull-back connection. For any triple intersection Vj =
G Xy Sijk» the tensor product (L) = LiL7;'L; is the pull-back of the line
bundle over G/Gjy, defined by the zero weight

(e — p) — Qe — poi) + (uj — i) = 0

of Gj. It is hence canonically trivial, with (6V);, the trivial connection.
The trivializing section fj = 1 satisfies 6¢ = 1 and (0V)t = 0. Take
(BJ')G = (wj)G- Then

1
(Bj))g — (Bi)c = (wj)¢ — (wi)g = —py(wo,)c = 7 curvg(VH) .

Thus G = (V,L,t) is a equivariant gerbe with connection (V,B). Since
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