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constructed in a similar way. Namely, we sew in the boundary of a 2-cell along
the path corresponding to each boundary word of a tile in T. (Technically, we
must sew in a cell for every possible boundary word, where all possible base

points are considered.) Then Y(T) -A X(T) is also a normal covering map,
again whose group of deck transformations is Z2 acting via translations of
the square lattice. Moreover, the restriction to Y is the covering map Y —» X.

The fundamental group of X(T) is the tile path group P(T), and the

covering space Y(T) corresponds to the subgroup 7r(T) Q P(T). The first
homology group of Y(T) is the tile homology group, H{T). Thus Theorem
4.11 can be considered as a special case of the Hurewicz Isomorphism
Theorem.

5. Strategy for working with tile path groups

We have shown above how to translate tiling problems into problems
in finitely presented groups, so we might hope to be able to resolve such

questions. Unfortunately, the situation is grim. The so-called word problem,
as well as many related problems, is known to be unsolvable, which means
that no algorithm can answer the question for all possible values of the input.

This is not the end of our story, for we are not trying to solve every word

problem. We might hope, however optimistically, that the word problems that

arise for us can be solved, whether by hook or by crook. The algorithmic
unsolvability of these problems should serve to temper any optimism that we

can muster.

The tile homotopy method has been successfully applied in several cases,

see [2, Exercise for Experts], [4], [13], [14]. Despite these efforts* results have

been found in only a handful of cases. In this section, we give a simple strategy
for understanding tile homotopy groups, which allows many new cases to be

handled. In view of the difficulty in working with finitely presented groups,
we understand that our approach cannot be algorithmic, nor can we expect to
be able to apply it in all cases. Nonetheless, we are able to use our strategy
to handle numerous new cases.

The tile path group for a finite set T of prototiles is given by a finitely
presented group. We are more interested in the tile homotopy group, which
is a subgroup of infinite index. The infiniteness of this index is unfortunate,
in light of the following well-known result.
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PROPOSITION 5.1. If G is a finitely generated [respectively, finitely
presented] group, and H G G is a subgroup of finite index, then H is

also finitely generated [respectively, finitely presented].

The usual proof uses covering space theory, similar to the determination of
the group, C, of closed paths above. Moreover, in the finitely presented case,

a presentation of H can be computed explicitly. We will do this later, with the

help of the computer software package GAP [5]. There is plenty of interesting
combinatorial group theory involved in this, but it is well understood, so it is

not our place to discuss it here.

If the index (G : H) is not finite, then H can fail to be finitely generated.

A typical example exhibiting this behavior is the case C Ç P that we saw

earlier.

In general, the tile homotopy group will not be finitely generated. However,
in some special cases, it will be. The method of demonstrating this is a non-
abelian analogue of the technique for showing finite generation of the tile
homology group, as in Examples 2.5 and 2.7. In order to achieve this, we
need to find some relations in the tile path group.

THEOREM 5.2. Suppose that xm and yn are central in P(T), for some
positive m and n. Then the natural map P(T) -» P(T) P(T)/(x,n,yn)
induces an isomorphism of tt(T) onto its image, tt(T). Moreover, tt(T) has
index mn inside P(T) and it is generated by the images of the elements

Cij xlyjxyx~ly~ly~jx~l for 0 < i < m and 0 < j < n.

Proof Note that ir(T) is normal in P(T), with quotient P(T)/tt(T)
PjC Z2. This quotient is the group of translations of the grid, so
x and y map to rightward and upward translation by 1 unit each. Let
N (x'7\yn) Ç P(T), which, by hypothesis, is central in P(T). Now N maps
injectively to P(T)/ir(T), whence N and ir(T) intersect trivially. Thus 7r(T)
mapsjnjectively to P(T)/N P(T). This proves the first statement. Next, note
that P(T)ß(T) P(T)/Ntt(T) Z2/(image of x"\yn) ^ (Z/mZ)x(Z/nZ).
This shows that the index (P(T) : tt(T)) mn, as claimed. Finally, we recall
that 7r(7~) is generated by the elements q7 over all ij g Z. Since T77 is
central in P(T), we see that q7 ci+mJ, and cê ciJ+n, because yn is also
central. The last statement is then clear.

Theorem 5.2 is an important tool for calculating tile homotopy groups. We
revisit an example (3.8) we had seen earlier.
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THEOREM 5.3. The tile homotopy group of T {| ï 1, | ]} has

order 120, and it is a central extension of A$ by Z/2Z.

Proof The tile path group has the presentation

P(T) (x,y I ^yx^y'^xy^^y^^xyxyx^yx^y^x^y^xy'1) •

The relators show that x3 and y3 are central in P(T). Let P(T)
P(T)/(x3,y3) (x,y I x3,y3,xyxyx~lyx~1y~1x~1y~lxy~l). Then the projection

P(T) -» P(T) induces an isomorphism of 7r(T) onto its image n(T),
which has index 9 in the finitely presented group P(T). Thus we can compute
a presentation of tt(T). In this particular instance, we have an even better
situation, because the group P(T) turns out to be finite, and therefore iF(T)
is also finite. In fact, GAP quickly tells us that \P(T)\ 1080, so that ir(T)
has order 120, and its structure can be completely determined.

The utility of Theorem 5.2 depends on the ability to find relations in the
tile path group. It is known that this cannot be done algorithmically, but in
some cases, it is easy to find the necessary relations. In Theorem 5.3, it was
trivial to find them. In the next theorem, the relations are not quite as obvious.

ULt
}, with all orientations allowed.Theorem 5.4. Let T {

(a) The tile homotopy group tt(T) is solvable. Its derived series is

T) — Gq I) Gi G2 5 G3 {1}, with quotients Go/G\ — 7r(7~)ab

H(T) — Zx (Z/3Z), G1/G2 (Z/2Z)2 and G2/G3 G2 Z/2Z. Moreover,
these isomorphisms can be given explicitly.

(b) If T tiles an m x n rectangle, then (at least) one of m or n is a
multiple of 4.

(c) A 2x3 rectangle has a signed tiling by T.

Proof. We first claim that x12 and y12 are central in P(T). Consider the
two tilings shown in Figure 5.5.

Figure 5.5

Two small tilings
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The first shows that x3 commutes with y2xy2, and the second shows that

x4 commutes with y2xy. Therefore, x12 commutes with both y2xy2 and y2xy,

and thus also with y. Hence x12 is central in P(T), and similarly, y12 is

also central. Let P(T) P(T)/(x^2,y12). Theorem 5.2 shows that tt(T) maps

isomorphically onto its image in P(T), with finite index. Now we can compute

a presentation of ir(T), using GAP. We obtain

Go 7r(T) (zi,^2 I Z22lZ2^1-Z2Zr2^l^rlz2 2)
>

where the generators are z\ =x_1yxy_1 and Z2 =y2xy_2x_1. From this, we

find that

H(T) 7r(T)ab Z x (Z/3Z).

There are two different ways we can make this isomorphism explicit. Firstly,

we can express the image of each Cy in terms of z\ and Z2, and then use the

explicit presentation of 7r(7~) above. However, it is much easier to compute

H(T) directly. We have

Figure 5.6

Translating a square 3 units to the right and 1 unit up

which shows how we can translate a square 3 units to the right and 1 unit up.

By considering all 8 orientations of this relation, we find that we can translate

a square by 1 diagonal unit. Now it is easy to see that H(T) Z x (Z/3Z)
is given by [R] H- (b — r,(b + r) mod 3), where the region R contains b black

squares and r red squares in the usual checkerboard coloring.
Next we compute the commutator subgroup G\ — [Go, Go]. We cannot

do this directly, because it has infinite index in Go. However, we can utilize
the same technique as in Theorem 5.2 above. The first relator implies that
z\ fe^i)3- Therefore, z\ commutes with ziZi, and hence is central in G0.
Now let N (z]) G Go. We see that N maps injectively to GQb Go/Gi,
so that Gi maps injectively to G0/N (zuz2 \ z3v Z2Z\Z2Z\Z2Z\2.zxz^z^z^1).
Moreover, its image has index 9 in Go/N. Now GAP can compute a

presentation of Gi ; it tells us that

Gi (a\,a2 I aia2a\a2 l),
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where a\ — Z2Z\Z2 1z1
1 and a2 Z2Zt lz2 lZ\. Also, G\ is easily seen to be a

finite group (quaternion of order 8). Thus the rest of (a) can be readily verified.

(b) It suffices to show that T cannot tile any (4m+ 2) x (4n + 2) rectangle.

Having already completely determined the structure of the tile homotopy group,
we content ourselves with a representation proof. Define (p: P(T) S32 by

p(x) =(1,2,3,4)(5,6,7, 8)(9,10,11,12)(13,14,15,16)(17,18,19,20)

(21,22,23,24)(25,26,27,28)(29,30,31,32),

ip{y) =(1,4,32,20)(2,12,7,17)(3,24,23,11)(5,16,15,21)(6,13,27,18)

(8,22,10,28)(9,19,29,25)(14,31,30,26).

It is straightforward to check that this indeed gives a homomorphism ; one

only needs to verify that the boundary words of all eight orientations are in the

kernel of (p. We also note that (p(x4m+2y4n+2x-(4m+2)y~(4w+2)) is non-trivial,
so a (4m + 2) x (4n + 2) rectangle cannot be tiled by T.

(c) This follows from the explicit isomorphism H(T) Zx (Z/3Z) given
above. Also, an explicit signed tiling is easy to give, based upon Figure 5.6

above.

We remark that these computations depend upon the correctness of the

computer program. If a proof of non-tileability relies on this computation, it
may be advantageous to give a certificate of proof, namely a homomorphism
P(T) —> G to a group in which we can compute easily. Having done that,

the representation proof can be easily verified, and is less susceptible to error.

-©if,.Theorem 5.7. {m Li }, with all orientations allowed.

(a) The tile homotopy group of T has order 32 and is a central extension

of (Z/2Z)4 by Z/2Z.
(b) The tile homology group, H(T) (Z/2Z)4, and a specific isomorphism

is given as follows. Suppose that the region R covers Xq [respectively,

X\^X2] cells with x-coordinate congruent to 0 mod 3 [respectively, 1 mod 3,

2 mod 3]. Also, suppose that R covers Yq [respectively, Y\,Y2] cells with

y-coordinate 0 mod 3 [respectively, 1 mod 3, 2 mod 3 7. Then a specific

isomorphism H(T) ifLjTLf is given by

[/?] ^ ((Xo + Xi) mod 2, (Xi + X2) mod 2, (F0 + Y\) mod 2, (Yi + Y2) mod 2).

(c) If T tiles an m x n rectangle, then mn is even.

(d) A 3x3 square has a signed tiling by T.
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Proof.(a) We first claim that x6 is central in P(T). Consider the two

tilings below.

Figure 5.8

Two small tilings

They show that

y~2x4y2xyx~6y~xx 1 and y~2x4y2x~4 1,

so that xyx'6y~lx —- x~4. This shows that x6 commutes with y and therefore

is central. Similarly, y6 is central in P(T). Now let P(T) — P(T)/(x\y6).
Theorem 5.2 shows that tt(T) maps isomorphically onto its image in P(T),
and it has index 36. We can now compute

7 T(T) {ZI,Z2,Z3,Z4I Z2U Z2, zl, zt, (ZlZ2)2Z4, (ZlZ3)2zj

(Z2Z4)2, )2)

where z 1 yxy~lx~l, zi — yx~ly~lx, Z3 =xyxy_1x-2 and Z4 y2xy~2x~l.
We can easily check that this group is finite, and its structure can be completely
determined. In fact, the relators make it clear that z2 is central, has order

2, generates the commutator subgroup, and the quotient tt(T)/{z%) is an

elementary abelian 2-group of rank 4.

(b) We show how we can translate a square by 3 units.

Figure 5.9

Translating a square by 3 units

Now a straightforward computation, similar to Examples 2.5 and 2.7, shows
that H(T) (Z/2Z)4, and the isomorphism is as claimed.

(c) We must show that T cannot tile a (2m + 1) x (2n+ 1) rectangle, so
it suffices to show that f cannot tile a (6m + 3) x (6n + 3) rectangle. We
use a representation proof. Define a homomorphism tp : P(T) S48 by
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ifix) =(1,13,11,12,10,16)(2,41,34,25,38,31)(3,42,35,26,39,32)(4,40,36,27,37,33)

(5,20,46,6,23,43)(7,19,17,48,22,14)(8,28,9,29,45,30)(15,44,21,18,47,24),

ip(y) =(1,27,30,12,10,23,29,18,11, 8,28,31)(2,13,14,46,4,44,43,45,3,25,15,40)

(5,20,24,35,9,21,41,34,33,19,16,36)(6,26,39,22,47,42,38,17,48, 32,37,7).

It is straightforward to verify that this indeed defines a homomorphism.
Furthermore, we easily check that (p(x6m+3y6n+3x-(6m+3)y_(6n+3)) is non-trivial,
so a (6m + 3) x (6n + 3) rectangle cannot be tiled by T.

(d) This follows from the isomorphism H(T) (jL/TLf given in part (b).

Also, it is easy to give an explicit one, based upon Figure 5.9.

Remark 5.10. The tilings in Figure 5.8 and the argument involved

essentially amount to "untiling" two square tetrominoes from the left figure.
This is the non-abelian analogue of a signed tiling. Since the boundary word
of the 1x6 rectangle is trivial in P(T), Theorem 5.7 remains true even if this

rectangle is included in the protoset T. We can also show that the hexomino

has such a "generalized tiling" by T, so this shape may also be

included in T, and Theorem 5.7 remains valid.

We give one more example.

THEOREM 5.11. Let T "tys where rotations are allowed, but

reflections are prohibited.
(a) The tile homotopy group, ir(T), is a central extension of Z4 by Z/2Z.

In particular, it is solvable.

(b) The tile homology group is H(T) Z4, and an explicit isomorphism
is given as follows. Suppose that the region R covers no [respectively,

^1,^2,^3,^4 7 cells (ij) with 2i + j 0 mod 5 [respectively, lmod5,
— A

2 mod 5, 3 mod 5, 4 mod 5 ]. Then an explicit isomorphism H(T)—is
given by [R] (nx - n0, n2 - no, n3 - n0l n4 - no).

(c) If T tiles an m x n rectangle, then mn is even.

(d) A 1x5 rectangle has a signed tiling by T.

Proof, (a) Note that T tiles a 2 x 5 rectangle, which implies that x2

commutes with y5. Similarly, x5 commutes with y2. Therefore, x10 commutes

with y and thus is central in P(T). In the same way, y10 is also central in P(T),
so we can compute a presentation of 7r(T), using Theorem 5.2. We obtain
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a presentation for 7r(T) with 5 generators: z 1 xyx *y 1, Z2 yx ly 1*>

Z3 x~ly~lxy, z4 and u> z^-zf1-^1 • The relati°ns are

ic2 1, wzi ZiW for 1 < i < 4, and z/Z/Zf1*/"1 w for 1 < i <.j < 4.

The relations show that w is central in tt(7~) and that the quotient tt(70/(w)
is isomorphic to Z4. Furthermore, w has order 2, and it generates the

commutator subgroup of 7t(7~)- This proves (a).

(b) Note that we have

Figure 5.12

Translating a square 2 units to the right and 1 unit up

so that äij d,+2j+i in H(T). Similarly, we have ày — â,-_ 1^+2, so H(T)
is generated by â0o, ßio, ä2o, ^30 and ä40. Furthermore, the relations collapse

into a single relation : ß0o + #10 + d2o + ^30 + d4o 0. Thus H(T) Z4, and

the isomorphism is as claimed.

(c) It suffices to show that T cannot tile a (10m+ 5) x (10w + 5) rectangle.

We use a representation proof. Define a homomorphism ip : P(T) -2 5*64 hy

(p(x) <1,2,4,47,16,27,41,54,56,9)(3,6,12,11,34,50,62,61,49,58)

(5,10,19,32,24,36,31,37,42,55)(7,14,23,28,43,57,52,40, 38,46)(8,59)

(13,21,35,51,20,15,25,17,18,30)(22,33,48,60,64,26,39,53,63,44)(29,45),

ip(y) =(2, 3,5,9,17,28,42,12,14,22)(4,7,13,6,20)(8,25,37,11,33)

(10,18,29,44,58)(15,24,30,46,57,63,62,48,54,47)(16,26,38,50,61)

(19,31,39,45,21,34,49,51,59,64)(27,40)(32,36,52,35,41)(43,56,60,55,53).

j As usual, it is straightforward to verify that cp indeed defines a homomorphism,
j and that ^(x10m+5y10n+5x_d0m+5)^-(i0n+5)^ xion-trivial.
' ^(d) This follows from the explicit isomorphism 7/(7")-—>Z4 given above.

Alternatively, it is easy to give a signed tiling, based upon Figure 5.12.
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