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is totally geodesic in P%, since it is a complex projective line. Therefore L
intersects T1 transversally in a real projective line. This implies that the normal
map Ny is a diffeomorphism from the open disk bundle in v(Q) of radius
Z into P¢ \ I1. The union of all closed geodesic segments normal to O of
length 7 fill up all of Pg. Thus the distance from a point p € P¢ \ (ITU Q)
to Q is exactly the length of the unique geodesic segment joining p and the
unique point ¢ € Q such that this segment is orthogonal to Q. Hence every
tubular neighbourhood of Q in PZ, of diameter less than 7, is diffeomorphic

to P¢\II. [

We remark that one has a construction for the Milnor fibre F of the Fermat
polynomial ¥4 in the spirit of Theorem (1.5), since F' can be regarded as the
open mapping cylinder of the fibration

Var12 2SO+ 1,R)/SO(n — 1,R) — SO(n + 1,R)/SO(n,R) = 5",

where V,y;, is the aforementioned Stiefel manifold.

2. ON THE GEOMETRY OF Pg¢

We now look more carefully at the decomposition of P{. arising from the
double fibration (1.4). For this, it is convenient to look at two other interesting
foliations that arise naturally from the double fibration (1.4), and from other
considerations too.

The first foliation F; is actually defined on P¢ \ Il and its leaves are the
fibres of 7, which are 2-disks transversal to O, by Theorem 1.5. By construc-
tion, each leaf of J; is transversal to all the manifolds F TI(Z, 1)xt C Pg for
t € (0,1), intersecting each in a copy of Py and approaching IT as ¢ — 1.
Let us construct this foliation in a different way. We endow P with the
Fubini-Study metric. From the proof of Theorem 1.5 we know that the normal
map Ny of Q induces a diffeomorphism between the open disk bundle of
radius 7/2 and P¢\II. The leaves of F; are the images of the normal disks.
Since the conjugation j: P¢ — P¢ 1s an isometry, we have that a projective
line £ in P{ intersects Q at two conjugate points iff it is orthogonal to Q,
and this happens iff £ can be defined by equations with real coefficients. So
we call these CR-lines. If two distinct CR-lines intersect, they do so in a
point in IT = Pg. Also, each CR-line £ meets Il in a real projective line,
which is an equator of L. Since all complex lines in P{. are totally geodesic,
the real projective line £ NII is a geodesic in P¢, at equal distance /2
from both intersection points in £ N Q. This divides £ into two round disks
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of maximal diameter, orthogonal to Q. One can prove that through each point
in P¢ \II there passes a unique CR-line, hence these lines foliate this space.
Therefore the open disks into which the CR-lines split fill out the whole of

¢ \I1, they are totally geodesic in P¢ and orthogonal to Q, thus providing
a fibre bundle decomposition of P¢ \ I1, equivalent to the open disk bundle
of the normal bundle v(Q) of Q in P{. By construction, the closure of each
leaf in P{. is obtained by attaching to the leaf a real projective line Py C II,
which is its boundary (or limit set). This circle (a real projective line in IT) is
invariant by conjugation and it is an equator of a unique CR-line, therefore
it is also a closed geodesic for the Fubini-Study metric of P¢.

In the case of the foliation F,, the leaves are the fibres of m,, up to
1sotopy. They are transverse to Ffr+1(2, 1) x t, for every t € (0,1), and these
leaves are also transverse to II. We can describe this foliation more precisely
as follows. Given z € I1, we let P, be the pencil of real projective lines in 11
passing through z. Note that the tangent vectors at z to the lines of this pencil
give the tangent space of Il at z. Let [, be one of the lines of the pencil P,.
Its complexification is a projective line L, in P{ defined by an equation with
real coefficients, invariant under conjugation. This implies that L, intersects
Q at two points w; and w,, which are conjugate; the intersection L, N Q 1is
necessarily orthogonal and /, is an equator in L,. Thus, there is a segment
fz, half of a real projective line (a circle) in L,, joining the points w;, z and
wy. This line is orthogonal to Il and to Q, it is geodesic in P& and has
length 7, by the minimality of L,. Doing this for all lines in the pencil P,,
we get an open n-disk of radius 7/2 in P{, orthogonal to IT at z, filled
by geodesics in P¢ of length /2 and intersecting Q orthogonally. Thus the
normal map N is regular for vectors of norm < 7/2. The leaves of F,
are the images under Np of the fibres of the open disk normal bundle of
IT C P¢ of radius 7.

There is another interesting way of thinking about this foliation, up to
isotopy, which helps to understand the way in which its leaves approach Q. By
Corollary 1.2 we have that P\ Q is the Milnor fibre F := {ZZ +--- 4+ 72 =1}
divided by the monodromy (z1,...,2,) + (—21,...,—2,). The fibre F is
the tangent bundle of the n-sphere, so it has a natural foliation by leaves
diffeomorphic to n-planes. These planes can be described as follows. Let
us decompose each Z := (zj,...,z,) Into its real and imaginary parts,
Z = U+iV. The fibre F is the set (U, V) € R**! x R**! gsuch that |U]|| > 1,
|IUIP=|IVIP =1 and U L V. If |U|| = 1, then we are on the n-sphere
and ||V|| = 0. Given a fixed Uy € §" C R*"!, its “tangent space” is the
plane defined as follows: for each A € R with A > 1, let S)\(Up) be the
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(n — 1)-sphere in the affine n-plane perpendicular to AUy, consisting of all
vectors V such that the vector Z = AU + iV is in F; these must satisfy
V][> = A2 — 1. The radius of the sphere S\(Up) grows with X, while for
A\ = 1 the corresponding “sphere” is just one point. For a given Uy € §”, let us
denote by L(Up) the union of all these (n—1)-spheres Sx(Up), forall A > 1.
Then L£(Uy) is a copy of R" embedded in F as a component of the 2-sheeted
hyperboloid consisting of £(Uy)U L(—Up). The monodromy map interchanges
these two sheets of the hyperboloid, so their image in P¢ is a manifold
diffeomorphic to a plane, that we denote by F(Up). By the uniqueness of the
tubular neighbourhood, these are the leaves of J;, up to isotopy.

From this description of JF, one can see the way in which the leaves
approach Q. In fact, let us denote by S)(Up) the image of the sphere Sy (Up)
in P¢. It lies in F(Up). Let vx(Up) be the intersection of the unit sphere
§2+1 - C"l with the real half cone over Sy(U,) with vertex at 0. The
image of v\(Up) in P{ is also S\(Up). The sphere v,(Up) is the set of
vectors ( \/23)\7?1 Uy, \/2—;2?1 V) with (AU, V) in S\(Up). Therefore the limit

of vx(Up) is the set of vectors (—\172 Uy, —\%v) where v is V/||V||, with V as

above. Since the vectors % Uy and % v have equal length, the image A(Up)
in P¢ of this limit set is in Q, and it is a (n — 1)-sphere. By continuity,
the limit set of S\(Up) in P¢ is also A(Up). Since the conjugate of the
vector (U, V) 1s (U,—V), the sets v,(Up) and their limit, are invariant under
conjugation. Hence A(Up) is also invariant by conjugation.

Let us summarize the previous discussion in the following

PROPOSITION 2.1. The double fibration (1.4) induces two foliations F,
and F, such that:

i) The first one Fi is defined on P{\11; its leaves are embedded copies
of R?, orthogonal to Q, which are the images under the normal map of Q of
the fibres of the normal disk bundle of Q of radius less than 5. The closure of
each such leaf is a closed 2-disk that meets 11 orthogonally in a projective line
which is a closed geodesic in P{.. For each pair of conjugate points in Q, the
corresponding leaves are naturally glued together along their common limit

set in I1, forming a complex projective line defined by real coefficients.

i1) The second foliation F, is defined on P¢\ Q ; its leaves are embedded
n-disks, orthogonal to 11, which are the images under the normal map of
IT of the fibres of the normal disk bundle of 1 of radius less than 5. The
closure of each such leaf is a closed n-disk that meets Q orthogonally in a
(n — 1)-sphere, invariant under complex conjugation.




184 LE D. T, J. SEADE. AND A. VERJOVSKY

We notice that the previous discussion also proves the following fact, that
we state as a proposition. We recall that given a Riemannian submanifold

N of P{, its focal points are the critical values of the normal map of N,
see [Mil].

PROPOSITION 2.2. The real projective space 11 = P}, consisting of the
points in P& with homogeneous real coordinates, is the set of focal points of
the quadric Q defined by the Fermat polynomial 75+ - -+z> = 0. Conversely,
the quadric Q is the set of focal points of II.

Thus, both manifolds Q and II can be regarded as caustics in P%, i.e. they
are the critical values of the Lagrangian maps defined by the corresponding
co-normal maps of Il and O, respectively (see [AG]).

Let us consider now the action of SO(n + 1,R) on P{, regarded as a
subgroup of the complex orthogonal group O(n + 1,C). This action leaves
Q invariant and it is by isometries with respect to the Fubini-Study metric.
An isometry of P¢ that leaves Q invariant necessarily carries the set of
focal points of Q into itself. Hence IT is also an invariant set for the
action of SO(n + 1,R). We know already that Q is the Grassmannian
Gnt12 =2 SO(n+1,R)/(SO(n—1,R)xSO(2,R)), so the action of SO(n+1,R)
is transitive on Q. Thus Q is one single orbit, and so is II. Let us look at
the orbit of a point w € P¢ \ (QUII). We claim that its orbit is the manifold
(F”++1(2, 1) x t) passing through w. For this we use again the normal map

No: v(Q) — P .

By the previous discussion, this map is a diffeomorphism from the open disk
bundle in v(Q) of radius 7 into Pg \ IT and the images of the fibres are
the leaves of Fj. Hence each point w € P¢ \ (QUII) is in the image of
the normal map Ny, i.e., there is a (unique) vector v,, € v¥(Q) normal to Q,
such that w = Np(v,); the norm of v, equals the distance d,, = d(w, Q)
from w to Q, which is > 0 and < w/2. That is, w corresponds, via Np,
to a point in the sphere bundle S, (v(Q)) of radius d,, in v(Q). We claim
that the SO(n + 1,R)-orbit O, of w is the image of this sphere bundle, i.e.
Ow = No(Sa,, (¥(Q))). For this we notice that the group SO(n+1,R) also acts
on the tangent bundle 7P¢ via the differential, and this action preserves the
(C) splitting TPE|p =2 TQ @ v(Q). This induces an action of SO(n+ 1,R)
on the normal bundle v(Q) of Q, and this action is isometric and commutes
with Ny, proving the claim. Hence the SO(n+ 1, R)-orbits are all manifolds
(F”++1(2, 1) x 1), for some ¢ € (0,1), with two exceptional orbits which are
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O and II, corresponding to t =0 and ¢ = 1. By [HL; 1.1], this implies that
O and II are minimal submanifolds of P}, which is obvious for Q, being
a complex submanifold. The orbits of maximal dimension, which in this case
are diffeomorphic to FT1(2, 1), are called principal orbits.

The previous arguments also show that each SO(n + 1,R)-orbit in Pg
is at constant distance from Q, and also from II, and these distances go
from 0 to Z. This proves that the space of SO(n + 1,R)-orbits in Pg is
the interval [0, %], with the two special orbits corresponding to the endpoints
of the interval. But one can actually be more precise about this statement.
Let us consider again the geodesic I, described above, in the construction of
the foliation J,. In fact we are interested in half of this geodesic segment.
To construct this “half geodesic segment”, that we shall denote by [, we can
start with any complex projective CR-line £. This line intersects II in a real
projective line, and it meets Q orthogonally at two conjugate points, say w and
w. Now we choose a point zo € IINL. Then [ is the geodesic (of length 7)
in £ joining the points zp and w, and it is a geodesic in P¢ because L 1is
totally geodesic. This geodesic [ starts at zo € IT and ends at w € Q. Hence
it meets each SO(n 4 1, R)-orbit orthogonally in exactly one point, since the
orbits are the level sets of the function distance to IT. Hence [ parametrizes
the orbits of SO(n + 1,R). This shows that the SO(n + 1,R)-action on P
1s a hyperpolar isometric action of cohomogeneity 1, which is already well
known (see for instance [HPTT, Ko]). In fact, cohomogeneity 1 means that
the principal orbits have codimension 1, and we know that this happens in
our case. An isometric action is said to be polar if there exists a closed,
connected submanifold % that meets all orbits orthogonally. In our case this
can be, for instance, the complete geodesic in £ determined by /. Such a
manifold 1s called a section. If one can choose such a section to be also flat,
one says that the action is hyperpolar. This is obviously satisfied in our case
since the section is a geodesic.

We have thus proved the following

THEOREM 2.3.

1) The natural SO(n + 1,R)-action on P} is an isometric, hyperpolar
action of cohomogeneity 1, whose spaée of orbits is the interval [0,7/2]. A
section for this action (i.e. a submanifold that intersects transversally each
orbit at exactly one point) can be constructed by considering some (any)
CR-line L, choosing a point z € LNII and taking the geodesic (a circle)
in L that passes through z and the two points where L meets Q.
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11) There are three orbit types: two special orbits, Q and Il, which
correspond to the endpoints {0,7/2}, and the principal orbits, which are
copies of the partial flag manifold,

F'7(2,1) 2 SO(n + 1,R)/(SO(n — 1,R) x Z/27Z),

of oriented 2-planes in R and lines in these planes. The manifold
Fi+1(2, 1) is diffeomorphic to the unit sphere normal bundle of Q in P¢, and
also to the unit sphere tangent bundle of Py. Each of the two special orbits
is the set of focal points of the other, and they are minimal submanifolds
of P¢.

iii) The complex projective lines in P whose homogeneous coordinates
are real, i.e. the CR-lines, foliate P \I1 and they are everywhere transversal
to the orbits of SO(n+1,R) (away from I1). In particular, they are orthogonal
to Q.

iv) The real projective space 11 = Py is embedded in P¢ so that its normal
bundle is isomorphic to its tangent bundle. Its “tangent spaces” naturally
define a foliation of P{\ Q by embedded copies of R", which are everywhere
transversal to the orbits of SO(n+ 1,R) (away from Q). In particular, they
are orthogonal to 11.

We now let g: P& — [0,7/2] C R be the function ¢(Z) = [d(Z, Q)]?,
i.e. g is the square of the distance to Q. It is clear that g is con-
stant along the SO(n + 1,R)-orbits, which are its level sets. Hence
g has the two special orbits O and II as critical set. It is clear
that if ¥ is a small disk in P¢ orthogonal to @ (or to II), then
the restriction of g to X 1is the ordinary quadratic map, se it is a
Morse function on X. This means, by definition, that g is a Bott-
Morse function. We have thus obtained the following results, motivated
by [DR}:

COROLLARY 2.4. The map q is a Bott-Morse function, whose level surfaces
are the orbits of SO(n+ 1,R) and the critical set consists of the two special

- orbits Q and 11 = Py.

Of course one can replace the function g above by p(Z) = [d(Z,I1)]?,
which is also a Bott-Morse function.
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COROLLARY 2.5. Let w: S*""' — PL be the Hopf fibration. Then the
composition p o w: $?"t!1 — [0,7/2] C R is a Bott-Morse function. The
critical set has two components, which are S'-bundles over the two special
orbits in Theorem 2.2. One of these is the Stiefel manifold V,12 C Sl of
real oriented 2-planes in R"!, diffeomorphic to the link of the affine Fermat
quadric, the other is the unique non-trivial S L _bundle over Py . (Both of these
are minimally embedded submanifolds of s+l by [HL].)

REMARKS 2.6.

i) We notice that if we let S>(P&) be the symmetric product (P& X Pg)/I,
where [ is the involution I(x,y) = (y,x), then there is a canonical holomorphic
surjection p: P& x P& — SP(PL) taking (x,y) to the point [(x,y)] in S*(Pg).
This induces an isomorphism S*(P¢) = PZ. Hence, every identification
Q = Pl also determines an analytic isomorphism S$*(Q) =2 PZ, where the
conic Q in P% is the image of the diagonal A. This is, essentially, a special
case of the projective Vieta Theorem, which says that P¢ is the n® symmetric
power of P&. A real version of this result was proved by Arnold in [Ar3;
Th. 2].

ii) Let us denote by j the antipodal map in P =2 CU{oo}. This is given
by j(z) = —1/Z, and is a fixed point free involution of P¢. The anti-diagonal
(the graph of the antipodal map) in P¢ x P{ is given by

A= {(-1/2)} .

This gives a copy of P( anti-holomorphically embedded in (P& x PL) \ A.
It is clear that A~! is invariant under the involution I(x,y) = (y,x) of
(P¢ X Pg). Thus A™' := {(z,—1/2)} is projected onto a smooth copy of P%
in P¢, disjoint from Q. Hence the identification ¢ of P{ with Q C P% also
determines, canonically, a copy of the real projective space Pg in P:\ O,
together with an involution of P¢ whose fixed point set is this P%. If Q is
the Fermat conic, {z] + 23 +23 = 0}, then this embedding of P} in P% is
the usual one.

iii) We notice that, also for n = 2, every diffeomorphism f: O — O
extends canonically to a diffeomorphism f: P¢ — P%, and this extension

——~——

1s functorial, ie., fbof; = fz ofl (cf. [Gh]). In fact, through every point
u€ Pt—Q, there are two tangents to Q, which determine points ¢(a,), ¢(ay)
in Q. Then f(u) is the point of intersection of the lines tangent to Q at the
points f(¢(a1)) and f(¢p(az)). A consequence of these remarks is that if G is
a group acting on Q, then the G-action extends to P%. In particular, if G is
SO(3,R), acting on Q = S* by rotations, its extension to P% is the action
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that we considered in Sections 2 and 3 above. Similarly, if G is Z/2Z acting
on @ as the antipodal map, then the corresponding extension to P% is given
by complex conjugation.

3. P{ AND THE 4-SPHERE S*

The previous discussion, restricted to n = 2 and compared to the
cohomogeneity 1 isometric action of SO3,R) on S* constructed in [HL],
motivates an equivariant version of the Arnold-Kuiper-Massey theorem [Arl,
Ar2, Ku, Mal], saying that PZ modulo conjugation is the 4-sphere. In this
section we give a new proof of this theorem. We construct an explicit algebraic
map ®: PL — S*, which is equivariant with respect to the cohomogeneity 1
isometric actions of SO(3,R) on P% and S* and induces a diffeomorphism
P% /conjugation = §*.

We start by recalling the SO(3,R)-action on S$*, as explained by Hsiang
and Lawson in [HL; Example 1.4 ].

Let S be the vector space of real 3 x 3, traceless and symmetric matrices.
As a real vector space S is R, and it can be equipped with a metric given by
the inner product (A, B) + trace(AB). Let S® be the space of matrices in S
with norm 1. One has an obvious diffeomorphism $* 22 S® . which becomes
isometric if we endow $* with its usual round metric and S® with the metric
given by the inner product in §. We shall identify these two spaces in the
sequel, denoting both of them by S* indistinctly. The group SO(3,R) acts on
S by A O'AO, where O is the transposed matrix (which is equal, in our
case, to O~!'). This induces an isometric action I' of SO(3,R) on S*. This
action on S* has two disjoint copies of P% as special fibres (see the remark
at the end of this section). The space of orbits is the interval [0, 1], with
the endpoints giving the special orbits. Each principal orbit (i.e. the orbits of
highest dimension) is a flag manifold

F?(2,1) = SOB3,R) / (Z/2Z x 7.)2Z) =~ L(4,1) / (Z/2Z),

of pairs (P,l) with P a plane in R® and [ line in P, where L(4,1) is the
lens space S° /(Z/4Z) = SO3,R) /(Z/27).
Let us give a similar description of P%. Let

53,0 ={HeM3,C)|H=H"}

be the space of complex 3 x 3 Hermitian matrices, where H* = H is the
adjoint matrix of H, obtained by first conjugating each entry of H and then
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