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22 G. CAPITANIO

suffisamment régulieres, convergentes vers H et uy respectivement. Pour
chaque n € N on construit la solution de minimax u, du probleme de Cauchy
de hamiltonien H, et donnée initiale (up,); il suit que la limite lim,_, oo Un
est la solution de minimax du probleme de Cauchy de hamiltonien H et
donnée initiale uy.

3. CARACTERISATION GEOMETRIQUE DE LA SOLUTION DE MINIMAX

3.1 NOTATIONS

Soit J°R = {(g,2)} ~ R? I’espace des jets d’ordre 0 sur R, m: J'R — R
la projection naturelle (g,z) — ¢. Un front d’onde dans J'R est la projection
dans J'R d’une courbe legendrienne de J'R = {(q,z,p)} ~ R® par
m:(q,z,p) — (g,2). Pour un front générique, les seules singularités possibles
sont des cusps et des auto-intersections transverses.

Soit F un front de J°R. On appelle section de F toute partie connexe
maximale o qui est le graphe d’une fonction ., : (o) — R de classe C!
par morceaux. Une branche de F est une section de classe C!.

Un front est long si, en dehors d’un compact de R, il est le graphe
d’une fonction, plat si sa tangente n’est jamais verticale. On peut dans ce
cas coorienter le front en fixant en tout point le vecteur orthonormal dont la
coordonnée en z est positive. Si le front est ainsi orienté, on peut distinguer
deux types de cusp: montant, si en suivant le front, on passe d’une branche
a I'autre en la direction de la normale fixée, descendent si on passe en la
direction opposée.

Deux courbes legendriennes de J!R sont isotopes (par une isotopie
legendrienne) s’il existe un chemin de I'une a I’autre dans 1’espace des courbes
legendriennes plongées de J'R. Pour la famille correspondante de fronts les
perestroikas qui interviennent génériquement sont montrés a la Figure 6;
il s’agit des projections des mouvements de Reidemeister pour les noeuds
relevement des fronts dans I’espace de contact (voir par exemple [Ar3]) : queue
d’aronde (Q), pyramide (P), porte-monnaie (B) et auto-tangence siire®) (J7).

Les auto-tangences dangereuses®) sont interdites car elles correspondent
a un point d’auto-intersection de la courbe legendrienne dont le front est la
projection. Pour un front plat toutes les auto-tangences sont dangereuses.

8) Au point d’auto-tangence la coorientation des deux branches est opposée.
) Au point d’auto-tangence la coorientation des deux branches est la méme.
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FIGURE 6

Singularités permises dans I’isotopie entre deux fronts

Le nombre de cusps d’un front, comptés avec leur signe (positif pour les
cusps montants, négatif pour les cusps descendants), le nombre de Maslov,
est invariant par isotopies legendriennes.

3.2 DECOMPOSITIONS ADMISSIBLES (D’APRES CHEKANOV ET PUSHKAR)

Dans cette section on rappelle brievement la construction d’un nouvel
invariant des nceuds legendriens, dfi a Yu. Chekanov et P. Pushkar, qui permettra
d’établir une caractérisation géométrique de la solution de minimax.

La projection d’un nceud legendrien de J'R dans J°R par 7; est un front
fermé. Soit X un tel front, générique.

On appelle décomposition de % des courbes Xi,...,X, fermées, ayant un
nombre fini d’auto-intersections, telles que pour i # j, X; N X; contient un
nombre fini de points, et X; U---UX, = X.

Un point double x € X;NX; de X est un point de saut si X; et X; ne sont
pas lisses en x, de Maslov si le nombre de cusps (comptés avec leur signe)
qui séparent le long du front les deux branches se coupant en x est 0.

DEFINITION.  Une décomposition (X,...,X,) de T est admissible si:
(1) chaque X; est homéomorphe au bord d’un disque: 0X; = B; ;
(2) pour tout i € {1,...,n}, g € R, I’ensemble

Bi(q) :={z€ R | (g,2) € B;}

est connexe; en particulier si ¢’est un point, ce point est un cusp du front;
(3) st (q0,2) € Xi N X; (i # j) est un point de saut alors pour g # g,

assez proche gqo, I’ensemble B;(g) N Bi(g) est soit B;(q), soit Bi(g), soit vide;
(4) les points de sauts sont tous de Maslov.
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REMARQUES.

(1) II suit des conditions (1) et (2) que chaque courbe X; a exactement
deux cusps, qui divisent la courbe en deux parties, que 1’on note o;f et o
(avec la convention suivante : pour tout (g,z:") € o générique, on a z;~ < z;").

(2) La condition (3) équivaut a demander qu’aucun point de saut ne réalise
I’une des configurations interdites montrées a la Figure 7.
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FIGURE 7

Configurations interdites autour des points de saut

Notons par #(D) le nombre de courbes X; et par #(S) le nombre de points
de saut dans une décomposition admissible D du front X.

THEOREME DE CHEKANOV-PUSHKAR ([Ch2], [C-P]). Le nombre de
décompositions admissibles d’un front projection d’un nceud legendrien est
invariant par isotopies legendriennes du neeud; de plus, le nombre #(D)—#(S)
est constant le long de [l’isotopie.

EXeEMPLE 3.1. La Figure 8 montre deux décompositions d’un front
générique, projection d’un nceud legendrien. Le front est isotope au front
levre (le front ayant deux cusps et aucune auto-intersection), donc; d’apres le
théoreme de Chekanov-Pushkar, la décomposition (1) est la seule admissible.

(1) (2)

FIGURE 8
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3.3 CARACTERISATION GEOMETRIQUE DU MINIMAX

Revenons au probléme de Cauchy (PC), notamment dans le cas O=R:

Ou(t,q) + H(t,q,0qu(t,q)) =0, V1>0,g€R

Fixons f, > 0. Soit S(¢, ¢; £) une fgqi de la solution géométrique A de (PCR)
(ou, plus précisément, une fgqi de la solution géométrique tronquée AT, avec
T > ty). D’apres le théoréme d’unicité de Viterbo, S;(g;&) = S(t0,q;¢&)
est la fggqi de A, = ANT*{t} x R); il s’ensuit que les solutions de
minimax associées a2 A et A, ont la méme valeur aux points (f,go) et go
respectivement, 2 savoir minmax{& — S(t,q0;&)}.

(PCR) {

DEFINITION.  On appelle solution multivogue un front de J°R long plat,
isotope au front nul {(g,0) € J°R}, projection d’une courbe legendrienne
(plongée) transversale a la base en dehors d’un compact.

Dans la suite on suppose ces fronts orientés par 1’orientation induite par
la premigre composante de J'R. Il résulte des sections 2.2 et 2.3 que le front
d’onde de A, , graphe de S;,, est de type solution multivoque.

REMARQUE. Le théoreme d’unicit¢ de Viterbo permet de ramener le
probleme de déterminer la solution de minimax d’un probleme de Cauchy
(PC) quelconque au cas Q = R. En effet, considérons la solution A’ du
probléme général. Soient S(z,q; ) sa fgqi et F le front d’onde de AT, graphe
de S. Si «y est une courbe lisse, paramétrée par R 3 s — v(s) €]0, T[xQO et
sans aucun point singulier, la restriction A, de la solution géométrique au
fibré cotangent de -y est une sous variété lagrangienne. Une fois identifié -~y
a R, (5,8) = S(v(s);§) est la fgqi de A, C T*R (théoréme d’unicité); son
graphe F., coincide avec la restriction de F a J% ~ J°R. Donc pour tout
s € R, le minimax de F, au point s est égal au minimax de F au point (s).

De plus, on peut choisir v de manicre que F., soit un front de type solution
multivoque. En effet F, est plat car F I’est. Pour que F. soit long, on peut
choisir v comme suit: si Q = R" on prend n’importe quelle droite d dans
{to} x Q; sinon on choisit pour ~ une courbe telle que y(+oo) € {0} x Q.
Pour montrer que le front F., est isotope & un front qui est le graphe d’une
fonction (et donc au front nul), considérons dans 1’espace des courbes lisses
dans ]0, T[xQ sans singularités un chemin {v,} entre vp =~y et y; = {0} xd
dans le premier cas et entre -y et une courbe contenue en ¢ = 0 dans le second
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(voir la Figure 9). Alors pour tout chemin générique de ce type, {F, } est

I’isotopie cherchée 1°).
O> t
T
FIGURE 9

Réduction au cas unidimensionnel (dans le cas Q = S')

Q0 =Ss! Q

Dans la suite on va donc étudier le minimax d’un front d’onde de J°R
de type solution multivoque, graphe d’une fgqi S(g;&). Nous allons donner
I’équivalent global (pour tout g € R) de la subdivision des points critiques
de & — S(g; &) (pour chaque g € R fixé) en point critique libre et couples de
points critiques li€s. La section du front parcourue par le point critique libre
de S lorsque ¢ parcourt R est le graphe de la solution de minimax.

Pour utiliser le théoreme de Chekanov et Pushkar il faut fermer le front en
ajoutant une section a I’infini. Ce nouveau front est le graphe d’une fonction
qui n’a aucun point critique libre. Lorsque g parcourt R, chaque couple
de points critiques li€s parcourt sur le front une courbe fermée (ayant deux
cusps). Ces courbes fermées sont la seule décomposition admissible du front;
en particulier une de ces courbes est formée par le graphe de la solution de
minimax et la section a I’infini. Par conséquent, étant donné un front de type
solution multivoque, on peut déterminer le graphe de la solution de minimax
a I’aide de la décomposition admissible de ce front.

Soit o une branche de F'; d’apres le théoreme de la fonction implicite il
existe une application lisse &, : mo(a) — RE telle que o soit le graphe de
g — S(to, q;€4(q)). Pour tout point ¢ a l'intérieur de mo(cr), £,(g) est un
point critique non dégénéré de S. Son indice ind(£(g)) ne dépend pas de g.
On appelle indice de « le nombre (indépendant du choix de §) ind(£(q)) — koo
(ou ko est I’indice de la forme quadratique de S§).

10) Cela n’est pas vrai en général pour tout chemin: un front F., pourrait avoir des auto-
tangences, qu’on peut faire disparaitre par une perturbation arbitrairement petite du chemin,
puisque le front F n’a pas d’auto-tangences.
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En tout point générique g € R, considérons les couples de points critiques
liés de & — S(g;€). Si le front est générique et si 2n est le nombre de
cusps de F, cela définit 2n sections (afr g7y Jgasny (o.f,0,), prolongées par
continuités aux points non génériques. On pose X; :=o;" Uo; .

Le front F n’est pas la projection d’un nceud de J'R; pour se ramener a
cette situation il faut “fermer” le front en ajoutant deux cusps et une section a
Iinfini o, (plate), comme a la Figure 10. On note F ce front, qui coincide

FIGURE 10

Le front F , compactification de F

avec F dans un rectangle R de J°R contenant toutes les branches bornées
de F (comme le minimax coincide avec le max-min, on obtient les mémes
résultats si la branche a I’infini passe au dessous de R). Ce nouveau front
est la projection par m; d’un nceud legendrien L de J'R. On fixe sur F
I’orientation induite par celle de F.

Soit u la solution de minimax de (PCR). La section de Chaperon-Sikorav,
notée ocs, est la section de F qui coincide avec le graphe du minimax a
I'intérieur de R. Soit X := 0, Uocs. 1l est facile de voir que (Xo, X3, ...,X,)
est une décomposition de F.

THEOREME 3.2. La décomposition (Xy, X1, . ..,X,) est la seule admissible.

Démonstration. D’apres la section 1.2, les courbes Xy, X, ..., X, satisfont
les axiomes (1) et (2) des décompositions admissibles. La condition (4) est
aussi vérifiée parce que la différence d’indice de deux branches est égal au
nombre de cusps (comptés avec leur signe) qui les séparent le long du front
(Proposition 1.10).

Il reste a montrer que la condition (3) est satisfaite, ce qui revient 2
montrer que les configurations interdites (I), (I) et (II) de la Figure 7 ne
se produisent jamais. Pour toute courbe X; = o;" Uo;, et g a I'intérieur de
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mo(X;), on note (q,&) € o et (q,&") € o , avec &M > &7, les deux
points de X; au dessus de g ; pour Xy = 0o U0ocs, On note (g, €s) € 0o €t

(q,&e) € ocs , avec € > &y

» &

ind(o;”) = ind(e;") ind(o])

FIGURE 11
Diagramme de Morse correspondant a la configuration interdite (I)

Soient S un point de saut, gs := m(S), g # qs assez proche de gs.
Supposons d’abord que S € X; N X;, avec i # j non nuls. Les diagrammes
de Morse de S correspondant aux configurations interdites (I), (II) et (III)
contredisent la Proposition 1.3, comme le montrent la Figure 11 pour la
configuration (I) et la Figure 12 pour les configurations (II) et (III).

ind(o;") = ind(o}")

gs q
ind(c;™) = ind(aj+)

FIGURE 12
Diagrammes de Morse des configurations interdites (II) et (III)

Puisque o, n’a aucun point de saut, il reste les sauts de type S € ocsNX;,
avec i > 0. Comme on suppose que la section a I’infini 0., passe au dessus
des autres sections de F , la configuration (III) ne se produit jamais. Les
configurations (I) et (I) conduisent encore a des diagrammes de Morse qui
contredisent la Proposition 1.3, voir la Figure 13.
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FIGURE 13

Diagrammes de Morse des configurations interdites (I) et (II)

On a ainsi démontré que notre décomposition est admissible. Comme Ila
courbe legendrienne L dont F est la projection est isotope & {(g,0,0) € J'R},
F est isotope au front lévre. Ce front a une seule décomposition admissible,
donc par le théoreme de Chekanov-PushkKar, F aussi admet une unique
décomposition admissible. [

REMARQUES.

(1) Le Théoreéme 3.2 fournit un critére géométrique purement combinatoire
qui permet de déterminer la solution de minimax d’un front d’onde (de type
solution multivoque) de dimension 1: il suffit pour cela de trouver la seule
décomposition admissible d’une compactification du front. La section associée
a la section a l’infini est alors la section de Chaperon-Sikorav du front
compactifié, ce qui détermine sans ambiguité le graphe de la solution de
minimax sur le front initial.

(2) Les axiomes qui définissent les décompositions admissibles d’un front
d’onde ont été définis par Chekanov et Pushkar comme généralisation de
la classification des points critiques d’une fonction de Morse en couple de
fonctions critiques liés. En ce sens le Théoréme 3.2 est le cas simple dont le
théoréme de Chekanov et Pushkar est la généralisation.

EXEMPLE 3.3. D’apres ’exemple 3.1, le graphe de la solution de minimax
associée au front montré a la Figure 14 est la section marquée par un trait
plus épais.

3.4 TRIANGLES EVANESCENTS

Dans cette section on donne une méthode qui permet de remplacer un
front d’onde de type solution multivoque par un front plus simple du méme
type et ayant le méme minimax. Cela permet de déterminer le minimax du
front initial en itérant cette méthode un nombre fini de fois.
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FIGURE 14

Soit {Fr}rG[O,l] une famille a un parametre de fronts de type solution
multivoque, projection d’une isotopie legendrienne {L,},¢(0,1)-

DEFINITION. On appelle intersection triple une perestroika de {F,},c(0,1]
de type “pyramide” (P), telle que le point triple soit I’intersection de trois
branches de méme indice.

REMARQUE. D’apres la définition de décomposition admissible, la seule
perestroika de la famille {F,},cj01; qui change de maniére non continue
I’unique décomposition admissible du front initial est 'intersection triple
(Figure 15).

FIGURE 15

Changement de la décomposition admissible en passant par une intersection triple

Considérons maintenant le front ' comme la trace d’une courbe I'" de
R? = J°R, paramétrée par s € R. Soit D = I'(so) = I'(sy), avec so < §1,
un point double du front, intersection de deux branches de méme indice.
L’ensemble I'([so,s:1[) est un triangle de sommet D s’il a exactement deux
cusps. On note alors T(D) un tel triangle et, pour ¢ > 0 aussi petit que
I’on veut, F — J(D) un front de type solution multivoque qui coincide avec
I’ensemble T(R \ [so,s:[) en dehors de la boule Bp(e) de R? centrée en D
de rayon €, et qui est le graphe d’une fonction lisse a 1’intérieur de cette
boule (cf. Figure 16).
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le front F — T (D)

FIGURE 16
Le front F — T(D)

DEFINITION.  Un triangle T(D) de sommet D est évanescent s’il existe
un chemin sans intersections triples entre F et F — T(D) dans I’espace des
solutions multivoques.

EXEMPLE 3.4. Considérons le front de l’exemple 3.3, montré a la
Figure 14. Les triangles T(P) et J(Q) sont évanescents, tandis que le triangle
T(R) ne l’est pas (en effet pour D'effacer il faut forcément passer par une
intersection triple au point §).

Soit D = {Xo, - .., X, } la décomposition admissible d’une compactification
F d’un front de type solution multivoque F.

THEOREME 3.5. Si n > 1, au moins une des courbes X;, avec i > 0, est
un triangle évanescent.

Démonstration. Considérons le graphe (connexe) associ€é a la décompo-
sition admissible de F = (L), c’est-a-dire le graphe ayant un sommet pour
chaque courbe X; € D et une aréte entre deux sommets pour chaque point
de saut entre les courbes correspondantes. D’apres le théoreme de Chekanov-
Pushkar, le nombre #(D) — #(8) est invariant par isotopie legendrienne de
L. Puisque L est isotope a un cercle dont la projection est le front levre,
ce nombre est toujours 1 pour les fronts obtenus par compactification d’une
solution multivoque. Or, #(D) étant le nombre de sommets et #(8) le nombre
d’arétes du graphe, on déduit que ce graphe est un arbre, dont les feuilles!!)
sont des triangles. Enfin, il est facile de voir que les triangles qui forment
une courbe X; € D (i > 0) sont évanescents. ]

1Y Les feuilles d’un arbre sont les sommets dont est issue une seule aréte.
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De toute évidence on a le fait suivant.

PROPOSITION 3.6. Si un triangle T(D) est évanescent, alors les sections
de minimax de F et de F — T(D) coincident en dehors de Bp(e).

REMARQUE. La Proposition 3.6 donne une méthode pour simplifier
récursivement le front d’onde dont on cherche le minimax: on recherche
parmi les triangles du front ceux qui sont évanescents. Aprés un nombre fini
de pas, on efface tous les cusps du front; la section restant coincide, en dehors
d’un nombre fini de boules arbitrairement petites, avec le minimax du front
initial.

EXEMPLE 3.7. Considérons le front générique F de type solution multi-
voque montré a la Figure 17. A c6té de chaque branche on a noté son indice.
La solution de minimax est la section mise en évidence.

FIGURE 17

Pour montrer cela, on applique la Proposition 3.6: les triangles T(G) et
T(E) sont évanescents (pour le premier c’est clair, pour le deuxieme, il faut
remarquer que la branche d’indice —1 de ce triangle peut traverser les points
A, B et C). Donc en dehors de deux boules aussi petites que ’on veut,
centrées en G et en E, les sections de minimax de F et de F — T (G) — T(E)
sont les mémes (voir la Figure 18). Les triangles J(A) et T(D) du nouveau
front sont de toute évidence évanescents, ce qui prouve que le minimax est
bien celui annoncé.
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FIGURE 18
Le front F — T(G) — T(E)
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