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22 G. CAPITANIO

suffisamment régulières, convergentes vers H et uo respectivement. Pour

chaque ne N on construit la solution de minimax un du problème de Cauchy
de hamiltonien Hn et donnée initiale (mqjW) ; il suit que la limite limn_^+00 un

est la solution de minimax du problème de Cauchy de hamiltonien H et
donnée initiale uq.

3. Caractérisation géométrique de la solution de minimax

3.1 Notations j

Soit 7°R {(#, z)} — R2 l'espace des jets d'ordre 0 sur R, 7To : /°R -A R j

la projection naturelle (q,z) q. Un front d'onde dans 7°R est la projection |

dans J°R d'une courbe legendrienne de JlR {(q,z,p)} — R3 par
7Ti : (q,z>p) i->- (q,z). Pour un front générique, les seules singularités possibles j

sont des cusps et des auto-intersections transverses.

Soit F un front de J°R. On appelle section de F toute partie connexe j

maximale a qui est le graphe d'une fonction x<r : tto(<j) -A R de classe C1 j

par morceaux. Une branche de F est une section de classe C1. j

Un front est long si, en dehors d'un compact de R, il est le graphe
d'une fonction, plat si sa tangente n'est jamais verticale. On peut dans ce

cas coorienter le front en fixant en tout point le vecteur orthonormal dont la

coordonnée en z est positive. Si le front est ainsi orienté, on peut distinguer
deux types de cusp: montant, si en suivant le front, on passe d'une branche j

à l'autre en la direction de la normale fixée, descendent si on passe en la

direction opposée.

Deux courbes legendriennes de J1 R sont isotopes (par une isotopie
legendrienne) s'il existe un chemin de l'une à l'autre dans l'espace des courbes

legendriennes plongées de ^R. Pour la famille correspondante de fronts les

perestroikas qui interviennent génériquement sont montrés à la Figure 6;

il s'agit des projections des mouvements de Reidemeister pour les nœuds

relèvement des fronts dans l'espace de contact (voir par exemple [Ar3]) : queue
d'aronde (Q), pyramide (P), porte-monnaie (.B) et auto-tangence sûres) (J~).

Les auto-tangences dangereuses9) sont interdites car elles correspondent
à un point d'auto-intersection de la courbe legendrienne dont le front est la

projection. Pour un front plat toutes les auto-tangences sont dangereuses.

8) Au point d'auto-tangence la coorientation des deux branches est opposée.

9) Au point d'auto-tangence la coorientation des deux branches est la même.
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(B) (/-)
Figure 6

Singularités permises dans l'isotopie entre deux fronts

Le nombre de cusps d'un front, comptés avec leur signe (positif pour les

cusps montants, négatif pour les cusps descendants), le nombre de Maslov,

est invariant par isotopies legendriennes.

3.2 Décompositions admissibles (d'après Chekanov et Pushkar)

Dans cette section on rappelle brièvement la construction d'un nouvel
invariant des nœuds legendriens, dû à Yu. Chekanov et P. Pushkar, qui permettra
d'établir une caractérisation géométrique de la solution de minimax.

La projection d'un nœud legendrien de JlR dans 7°R par tï\ est un front
fermé. Soit X un tel front, générique.

On appelle décomposition de X des courbes X\,,.., Xn fermées, ayant un
nombre fini d'auto-intersections, telles que pour i / j, Xi DXj contient un
nombre fini de points, et X\ U • • • U Xn X.

Un point double x G X; fl Xj de X est un point de saut si Xi et Xj ne sont

pas lisses en x, de Maslov si le nombre de cusps (comptés avec leur signe)
qui séparent le long du front les deux branches se coupant en x est 0.

Définition. Une décomposition (Xi,..., Xn) de X est admissible si :

(1) chaque X/ est homéomorphe au bord d'un disque: dXt Bt ;

(2) pour tout i G {1, q G R, l'ensemble

Bi(q) := {z £ R | (q,z) C Bt}

est connexe; en particulier si c'est un point, ce point est un cusp du front;
(3) si (qo,z) G Xi D Xj (i ^ j) est un point de saut alors pour q ^ q0,

assez proche q0, l'ensemble Bi(q)nBi(q) est soit Bt{q), soit Bj(q), soit vide;
(4) les points de sauts sont tous de Maslov.
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Remarques.
(1) Il suit des conditions (1) et (2) que chaque courbe Xt a exactement

deux cusps, qui divisent la courbe en deux parties, que l'on note af et af
(avec la convention suivante : pour tout (q, zf) G af générique, on a zf < zf

(2) La condition (3) équivaut à demander qu'aucun point de saut ne réalise
l'une des configurations interdites montrées à la Figure 7.

(I) OD (III)

Figure 7

Configurations interdites autour des points de saut

Notons par #ÇD) le nombre de courbes Xt et par #(§) le nombre de points
de saut dans une décomposition admissible V du front X.

Théorème de Chekanov-Pushkar ([Ch2], [C-P]). Le nombre de

décompositions admissibles d'un front projection d'un nœud legendrien est

invariant par isotopies legendriennes du nœud; de plus, le nombre #ÇD) — #(S)

est constant le long de l'isotopie.

Exemple 3.1. La Figure 8 montre deux décompositions d'un front
générique, projection d'un nœud legendrien. Le front est isotope au front
lèvre (le front ayant deux cusps et aucune auto-intersection), donc; d'après le

théorème de Chekanov-Pushkar, la décomposition (1) est la seule admissible.

Figure 8
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3.3 CARACTÉRISATION GÉOMÉTRIQUE DU MINIMAX

Revenons au problème de Cauchy (PC), notamment dans le cas Q R :

f dtu(t, q) + H(t, q, dqu(t, q)) 0, V t > 0, q G R
(PCR) <

[u(0,q) Uo(q), V q G R.

Fixons f0 > 0. Soit S(t,q\Q une fgqi de la solution géométrique A de (PCR)

(ou, plus précisément, une fgqi de la solution géométrique tronquée Ar, avec

T > to). D'après le théorème d'unicité de Viterbo, Sto(q;0 := S(to,q;0
est la fgqi de Ato Afl T*({t0} x R) ; il s'ensuit que les solutions de

minimax associées à A et Ato ont la même valeur aux points (to,qo) et qo

respectivement, à savoir minmax{£ S(to,qo',0} •

Définition. On appelle solution multivoque un front de J°R long plat,

isotope au front nul {(g, 0) G 7°R}, projection d'une courbe legendrienne

(plongée) transversale à la base en dehors d'un compact.

Dans la suite on suppose ces fronts orientés par l'orientation induite par
la première composante de J°R. Il résulte des sections 2.2 et 2.3 que le front
d'onde de Ato, graphe de Sto, est de type solution multivoque.

Remarque. Le théorème d'unicité de Viterbo permet de ramener le

problème de déterminer la solution de minimax d'un problème de Cauchy
(PC) quelconque au cas Q — R. En effet, considérons la solution AT du

problème général. Soient S(t^q;Q sa fgqi et F le front d'onde de Ar, graphe
de S. Si 7 est une courbe lisse, paramétrée par R 3 s i-a j(s) G]0, T[xQ et

sans aucun point singulier, la restriction A7 de la solution géométrique au

fibré cotangent de 7 est une sous variété lagrangienne. Une fois identifié 7
à R, (ij0 f-A S(7(s);0 est la fgqi de A7 C P*R (théorème d'unicité); son

graphe F1 coïncide avec la restriction de F à J°7 2^ 7°R. Donc pour tout
s G R, le minimax de F1 au point s est égal au minimax de F au point 7^).

De plus, on peut choisir 7 de manière que F1 soit un front de type solution
multivoque. En effet P7 est plat car F l'est. Pour que F1 soit long, on peut
choisir 7 comme suit: si Q Rn on prend n'importe quelle droite d dans

{to} x Q ; sinon on choisit pour 7 une courbe telle que 7(±oo) G {0} x Q.
Pour montrer que le front F1 est isotope à un front qui est le graphe d'une
fonction (et donc au front nul), considérons dans l'espace des courbes lisses
dans ]0, T[xQ sans singularités un chemin {yr} entre 70 7 et 71 {0} xd
dans le premier cas et entre 7 et une courbe contenue en t 0 dans le second
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(voir la Figure 9). Alors pour tout chemin générique de ce type, {Flr} est

l'isotopie cherchée10).

Dans la suite on va donc étudier le minimax d'un front d'onde de 7°R
de type solution multivoque, graphe d'une fgqi S(q;£). Nous allons donner

l'équivalent global (pour tout q G R) de la subdivision des points critiques
de £ i-À S(q\ 0 (pour chaque q e R fixé) en point critique libre et couples de

points critiques liés. La section du front parcourue par le point critique libre
de S lorsque q parcourt R est le graphe de la solution de minimax.

Pour utiliser le théorème de Chekanov et Pushkar il faut fermer le front en

ajoutant une section à l'infini. Ce nouveau front est le graphe d'une fonction

qui n'a aucun point critique libre. Lorsque q parcourt R, chaque couple
de points critiques liés parcourt sur le front une courbe fermée (ayant deux

cusps). Ces courbes fermées sont la seule décomposition admissible du front;
en particulier une de ces courbes est formée par le graphe de la solution de

minimax et la section à l'infini. Par conséquent, étant donné un front de type
solution multivoque, on peut déterminer le graphe de la solution de minimax
à l'aide de la décomposition admissible de ce front.

Soit a une branche de F ; d'après le théorème de la fonction implicite il
existe une application lisse Ça : 7To(g) -a RK telle que a soit le graphe de

q i-> S(to,q',£a(q)). Pour tout point q à l'intérieur de 7To(a), £<*(#) est un

point critique non dégénéré de S. Son indice ind(£(#)) ne dépend pas de q.
On appelle indice de a le nombre (indépendant du choix de S1) ind(£(#)) —

(où koo est l'indice de la forme quadratique de S).

10) Cela n'est pas vrai en général pour tout chemin: un front Flr pourrait avoir des auto-
tangences, qu'on peut faire disparaître par une perturbation arbitrairement petite du chemin,
puisque le front F n'a pas d'auto-tangences.

71

0 T

Figure 9

Réduction au cas unidimensionnel (dans le cas Q S1)
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En tout point générique q G R, considérons les couples de points critiques

liés de £ i-> S(qm,Q. Si le front est générique et si 2n est le nombre de

cusps de F, cela définit 2n sections (o-J1-, crf (cr+, cr~), prolongées par
continuités aux points non génériques. On pose Xt <jf~ U cr/~.

Le front F n'est pas la projection d'un nœud de JlR; pour se ramener à

cette situation il faut "fermer" le front en ajoutant deux cusps et une section à

l'infini (plate), comme à la Figure 10. On note F ce front, qui coïncide

Figure 10

Le front F, compactification de F

avec F dans un rectangle R de 7°R contenant toutes les branches bornées

de F (comme le minimax coïncide avec le max-min, on obtient les mêmes

résultats si la branche à l'infini passe au dessous de R). Ce nouveau front
est la projection par tti d'un nœud legendrien L de JlR. On fixe sur F
l'orientation induite par celle de F.

Soit u la solution de minimax de (PCR). La section de Chaperon-Sikorav,
notée cres, est la section de F qui coïncide avec le graphe du minimax à

l'intérieur de R. Soit X0 a^Uacs- Il est facile de voir que (X0,Xi,... ,Xn)
est une décomposition de F.

THÉORÈME 3.2. La décomposition (Xo,Xi,... ,Xn) est la seule admissible.

Démonstration. D'après la section 1.2, les courbes X0,Xi,... ,Xn satisfont
les axiomes (1) et (2) des décompositions admissibles. La condition (4) est
aussi vérifiée parce que la différence d'indice de deux branches est égal au
nombre de cusps (comptés avec leur signe) qui les séparent le long du front
(Proposition 1.10).

Il reste à montrer que la condition (3) est satisfaite, ce qui revient à

montrer que les configurations interdites (I), (II) et (III) de la Figure 7 ne
se produisent jamais. Pour toute courbe Xt af~ U cr~, et q à l'intérieur de
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wo(Xj), on note (q, çf) G crf et G vi avec Çf > «F les deux

points de Xi au dessus de q ; pour Xq ctqo U <tCiS-, on note (q, £oo) G et

(<F Ù) eres avec f

Figure 11

Diagramme de Morse correspondant à la configuration interdite (I)

Soient S un point de saut, qs := ttq(S), q ^ qs assez proche de q$.
Supposons d'abord que S G Xi n Xj, avec i ^ j non nuls. Les diagrammes
de Morse de S correspondant aux configurations interdites (I), (II) et (III)
contredisent la Proposition 1.3, comme le montrent la Figure 11 pour la

configuration (I) et la Figure 12 pour les configurations (II) et (III).

Figure 12

Diagrammes de Morse des configurations interdites (II) et (III)

Puisque n'a aucun point de saut, il reste les sauts de type S G crC)SnXj,

avec i > 0. Comme on suppose que la section à l'infini a00 passe au dessus

des autres sections de F, la configuration (III) ne se produit jamais. Les

configurations (I) et (II) conduisent encore à des diagrammes de Morse qui
contredisent la Proposition 1.3, voir la Figure 13.
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Figure 13

Diagrammes de Morse des configurations interdites (I) et (II)

On a ainsi démontré que notre décomposition est admissible. Comme la

courbe legendrienne L dont F est la projection est isotope à {(g, 0,0) G T^R},
F est isotope au front lèvre. Ce front a une seule décomposition admissible,

donc par le théorème de Chekanov-Pushkar, F aussi admet une unique

décomposition admissible.

Remarques.
(1) Le Théorème 3.2 fournit un critère géométrique purement combinatoire

qui permet de déterminer la solution de minimax d'un front d'onde (de type
solution multivoque) de dimension 1 : il suffit pour cela de trouver la seule

décomposition admissible d'une compactification du front. La section associée

à la section à l'infini est alors la section de Chaperon-Sikorav du front
compactifié, ce qui détermine sans ambiguïté le graphe de la solution de

minimax sur le front initial.
(2) Les axiomes qui définissent les décompositions admissibles d'un front

d'onde ont été définis par Chekanov et Pushkar comme généralisation de

la classification des points critiques d'une fonction de Morse en couple de

fonctions critiques liés. En ce sens le Théorème 3.2 est le cas simple dont le
théorème de Chekanov et Pushkar est la généralisation.

Exemple 3.3. D'après l'exemple 3.1, le graphe de la solution de minimax
associée au front montré à la Figure 14 est la section marquée par un trait
plus épais.

3.4 Triangles évanescents

Dans cette section on donne une méthode qui permet de remplacer un
front d'onde de type solution multivoque par un front plus simple du même

type et ayant le même minimax. Cela permet de déterminer le minimax du
front initial en itérant cette méthode un nombre fini de fois.
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Soit {Fr}rG[o5i] une famille à un paramètre de fronts de type solution

multivoque, projection d'une isotopie legendrienne {Lr}rG[0,i].

DÉFINITION. On appelle intersection triple une perestroika de {Fr}rG[o,i]
de type "pyramide" (P), telle que le point triple soit l'intersection de trois
branches de même indice.

Remarque. D'après la définition de décomposition admissible, la seule

perestroika de la famille {/v}rëp,i] qui change de manière non continue

l'unique décomposition admissible du front initial est l'intersection triple
(Figure 15).

Figure 15

Changement de la décomposition admissible en passant par une intersection triple

Considérons maintenant le front F comme la trace d'une courbe T de

R2 7°R, paramétrée par s G R. Soit D T(so) IXu), avec sç, < si,
un point double du front, intersection de deux branches de même indice.

L'ensemble r([so,M[) est un triangle de sommet D s'il a exactement deux

cusps. On note alors 7(D) un tel triangle et, pour e > 0 aussi petit que
l'on veut, F — 7(D) un front de type solution multivoque qui coïncide avec

l'ensemble r(R \ l>o,siD en dehors de la boule £>£>(e) de R2 centrée en D
de rayon e, et qui est le graphe d'une fonction lisse à l'intérieur de cette

boule (cf. Figure 16).
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Figure 16

Le front F — 7(D)

Définition. Un triangle T(D) de sommet D est évanescent s'il existe

un chemin sans intersections triples entre F et F — 7(D) dans l'espace des

solutions multivoques.

Exemple 3.4. Considérons le front de l'exemple 3.3, montré à la

Figure 14. Les triangles 7(P) et 7(Q) sont évanescents, tandis que le triangle

T(R) ne l'est pas (en effet pour l'effacer il faut forcément passer par une

intersection triple au point S).

Soit V {X0,... ,Xn} la décomposition admissible d'une compactification
F d'un front de type solution multivoque F.

THÉORÈME 3.5. Si n > 1, au moins une des courbes Xi, avec i > 0, est

un triangle évanescent.

Démonstration. Considérons le graphe (connexe) associé à la décomposition

admissible de F tt\(L), c'est-à-dire le graphe ayant un sommet pour
chaque courbe Xi G V et une arête entre deux sommets pour chaque point
de saut entre les courbes correspondantes. D'après le théorème de Chekanov-

Pushkar, le nombre #(P) — #(S) est invariant par isotopie legendrienne de

L. Puisque L est isotope à un cercle dont la projection est le front lèvre,
ce nombre est toujours 1 pour les fronts obtenus par compactification d'une
solution multivoque. Or, #(V) étant le nombre de sommets et #(S) le nombre
d'arêtes du graphe, on déduit que ce graphe est un arbre, dont les feuilles11)
sont des triangles. Enfin, il est facile de voir que les triangles qui forment
une courbe Xi eV (i > 0) sont évanescents.

11 Les feuilles d'un arbre sont les sommets dont est issue une seule arête.
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De toute évidence on a le fait suivant.

PROPOSITION 3.6. Si un triangle 7(D) est évanescent, alors les sections
de minimax de F et de F — 7(D) coïncident en dehors de Bp(e).

Remarque. La Proposition 3.6 donne une méthode pour simplifier
récursivement le front d'onde dont on cherche le minimax: on recherche

parmi les triangles du front ceux qui sont évanescents. Après un nombre fini
de pas, on efface tous les cusps du front ; la section restant coïncide, en dehors

d'un nombre fini de boules arbitrairement petites, avec le minimax du front
initial.

Exemple 3.7. Considérons le front générique F de type solution multi-

voque montré à la Figure 17. A côté de chaque branche on a noté son indice.
La solution de minimax est la section mise en évidence.

Pour montrer cela, on applique la Proposition 3.6: les triangles 7(G) et

7(E) sont évanescents (pour le premier c'est clair, pour le deuxième, il faut

remarquer que la branche d'indice —1 de ce triangle peut traverser les points

A, B et C). Donc en dehors de deux boules aussi petites que l'on veut,
centrées en G et en F, les sections de minimax de F et de F — 7(G) — 7(E)
sont les mêmes (voir la Figure 18). Les triangles T(A) et 7(D) du nouveau
front sont de toute évidence évanescents, ce qui prouve que le minimax est

bien celui annoncé.
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Figure 18

Le front F — T(G) — T(E)
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