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A SYMPLECTIC LOOK AT SURFACES OF REVOLUTION

by Andrew D. HWANG

Dedicated to Professor Shoshichi Kobayashi on his 70" birthday

1. INTRODUCTION

Informally, a surface of revolution is a 2-dimensional Riemannian mani-
fold £ equipped with an isometric circle action. Surfaces of revolution are
among the simplest objects in differential geometry; the metric is determined
by a single function of one real variable, hence can be specified by solving
an ordinary differential equation.

A function x: £ — R is an “orbit parameter” if each level set of «x
is a single orbit. Given an orbit parameter, a “profile” for X is a function
that determines the lengths of the orbits. For example, when the graph of a
function ¢ is revolved about an axis in R?, the “obvious” orbit parameter is
a Cartesian coordinate x along the axis of revolution, and ¢ itself is a profile.

This note constructs surfaces of revolution from an elementary, intrinsic
orbit parameter and profile function. The point of departure is a theorem of
Archimedes, whose proof is nowadays an easy calculus exercise. Let S C R3
be the unit sphere, regarded as a surface of revolution by fixing an arbitrary
diameter. A “zone” of S is a subset bounded by two planes perpendicular to
the diameter, and the “height” of a zone is the distance between its bounding
planes.

THEOREM 1.1. A zone of height h on the unit sphere has area 2wh; in
particular, the area depends only on the height of the zone.
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To reformulate, let x be a Cartesian coordinate along the diameter, and
let O be the equator {x = 0}. Each p € S lies on a unique circle O,
perpendicular to the diameter; let 277 be the oriented area bounded by
O and O,. Theorem 1.1 asserts that the extrinsic position x and the intrinsic
coordinate T are the same orbit parameter.

Of course, distance along the axis of rotation does not correspond so
nicely with zonal area on a general surface of revolution, but in some ways
area is a “better” parameter: with a judicious choice of profile function,
the Gaussian curvature becomes extremely simple. The resulting description
makes it easy to study and classify surfaces of revolution that have specified
Gaussian curvature. The motivation for this description comes from symplectic
and Kéhler geometry, but the idea and methods are elementary.

2. ABSTRACT SURFACES OF REVOLUTION

Identify the circle S' with the multiplicative group of complex numbers
of norm 1, and let P! = CU{oco} be the Riemann sphere, equipped with the
S!-action induced by multiplication on C. In this note, an abstract surface of
revolution is a pair X = (D, g) consisting of a connected, S'-invariant domain
D C P! and an S'-invariant metric g, possibly with conical singularities at
the fixed points.

GENERAL METRICS IN COORDINATES

There are two ‘“natural” coordinate systems on an abstract surface of
revolution : isothermal parameters adapted to the circle action, .and action-
angle coordinates. While each highlights aspects of the metric geometry, their
interplay is synergistic, and naturally suggests the “correct” choice of profile.

ISOTHERMAL PARAMETERS. A coordinate system (x,y) is said to be
isothermal for the metric g if there exists a (locally defined) function
¥ = 1(x,y) such that

| g = e¥(d¥® + dy?).

On a surface of revolution, existence of isothermal parameters is elementary.
To wit, choose local coordinates (r,#) in which 565 generates the S! action.
Because the metric is invariant under the circle action, the components of g
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do not depend on 6. Fix a point wy € D and consider the curve through wg
that is everywhere g-orthogonal to the § I orbits. Let s be a real coordinate
along this curve, and use the circle action to extend s to all of D; in (s,0),
the metric has the form

g = e g 1 ¢h g2

Now solve the differential equation ¢¥'@s'(r)?> = %2 for s as a function
of ¢, and set 1) = ¢y, os. In (¢,0), the metric has the form

(2.1) g=e"0(dr* + do*) .

THE AREA FORM AND ACTION-ANGLE COORDINATES. By (2.1), the area
element of g is the 2-form

dA = e?Ddt N db.
Writing dr for the exact 1-form e¥® dt, the area form is

(2.2) dA =dr Ndb.

The function 7, unique up to an additive constant, is a function of ¢ alone,
i.e., is constant on the orbits of the S' action.

A zone of X is a connected region bounded by two orbits. Equation (2.2)
immediately implies that the zone {7y < 7 < 71} has area 27 (1, — 1) for all
70 < 71. In symplectic geometry, an S'-invariant function with this property
is called a moment map of the circle action, and (7,6) are called action-
angle variables. Archimedes’ theorem asserts that for the unit sphere in R,
projection to a diameter 1s a moment map for the circle action that revolves
the sphere about that diameter.

Introducing the function ¢(7) = e¥?, the metric g is given by

(2.3) p(1)(di* + db*) = L+ () de?
@(T)
The thesis of this note is that ¢, henceforth called the momentum profile
of the metric, is the correct choice of profile for investigations concerning
Gaussian curvature.
Equation (2.3) implies that the length element along an orbit is /(1) d#,

so the length of an orbit is 27+/¢(7). Similarly, the arc length element along
a generator of the surface is

dr
2. — —
(2.4) ds = /() dt Tom
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The geometry (in almost' the literal sense of “earth measurement”) of
the metric is depicted in Figure 2.1. Fix an orbit O and define a function
7: D — R by letting 277(p) be the oriented area of the zone bounded by
O and the orbit through p. Let I C R be the image of 7, and define the
non-negative function p: I — R so that 27w/o(7) is the length of the orbit
through p.

FIGURE 2.1 |
A metric in terms of zonal area

CONSTRUCTING THE METRIC

Figure 2.1 expresses the moment map 7 and the momentum pro-
file ¢ in terms of the metric geometry. In order to work analytically
with surfaces of revolution, it is desirable to reverse this d_evelopment.
Clearly, g can be recovered from 7 and ¢; remarkably, ¢ alone is
enough.

In P!, the points 0 and oo, which are fixed by the S!-action, are
exceptional. If D contains fixed points of the circle action, then geometric
properties of the metric, such as completeness or smooth extendibility, must
be studied separately there. Until further notice, it is assumed that fixed points
in D (if any) have been removed. The domain D on which the metric lives
is therefore a subset of the punctured complex line C*. The isothermal
coordinates (z,6) are hereafter identified with the global complex coordinate

w = exp(t + i6).
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To avoid fixed points, consider an open interval I = (c, 8). A momentum
profile is a positive function ¢: 1 — R, of class C? on a neighborhood of
the closure. Given a momentum profile ¢, the aim is to construct a surface
of revolution £ = (D, g,) and a function 7: D — [ such that

(i) Each level set of 7 is an orbit of the circle action.
(ii) The area of the zone {7o < 7 < 71} is 2w (17 —7p) forall 7o <7 in 1.
(iii) The length of the orbit {7 = 75} is 2m/(1p) for a < 79 < .

Begin by fixing 7y € I arbitrarily and setting

* dx b dx
2.5) a::/ el b::/ —.
( e n #00)
Because 1/¢ >0 on («a, ), the equation
(1) dx
2.6 f= / —
( ) T0 SD(X)

defines an increasing, differentiable function 7: (a,b) — (o, 3). The metric
and area form, which a priori depend on 7y, are defined by

g = (1) (d* +db*),  dA = p(r)dtAdf

on the annulus D = {7 € C* | a < t < b}.
Differentiating (2.6) with respect to #, 7" = ¢(7), so dA = dt N db.

Properties (i) —(iii) follow immediately. The function s: (a,b) — R defined
by

7(1)
Q2.7) s(f) = / \/%

gives the geodesic distance along a generator of X by (2.4).

To see analytically that the isometry class of g, does not depend on 79,
introduce the function

™™ xd
(2.8) u(t) = / &

T0 ()O(x)
Because 7’ = (1), successive differentiation gives

u =7, u'() =1 = o(r),

or u”(f) = ¢¥® in the notation of (2.1). Varying 79 changes u by an additive
constant, which has no effect on e¥®” = (). As a function of ¢, 7 is the
inverse of a definite integral; changing the lower limit of integration in (2.5)
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causes the interval (a,b) to be translated, which does not alter the conformal
type of the annulus D. Geometrically, a choice of 7y fixes the orbit O in
Figure 2.1.

Similar considerations show that the metric associated to the “translated”
profile 7 — (7 — 79) is isometric to g, for every 7y € R, as is the metric
associated to the “reflected” profile 7 — ¢(—7). Specifically, a translational
change of variable in (2.8) changes u by an added affine function of ¢, while
reflecting reverses the orientation of the ¢ axis. Neither affects the isometry
class of the resulting metric. It is therefore harmless to assume, as convenient,
that 0 € I = («, B) or (if 1 # R) that a = 0.

THE GAUSSIAN CURVATURE

In isothermal coordinates (x,y), the Gaussian curvature of g = e¥ (dx*+dy?)
is given by the well-known formula

K = _%e_q’b(@bxx + wyy) .

On a surface of revolution, the conformal factor i is independent of @, so
the Gaussian curvature simplifies to

(2.9) K=—2e%09" ().

To compute K in terms of 7, first note that the equation dr = ¢(7)dt implies
e V02 =2 and & = p(r) £ as vector fields on D. Since (7) = log ¢(1),
substituting in (2.9) gives

(2.10) K=—3% (¢ 5-Uogp) = —30"(1).

This striking formula is perhaps the greatest advantage of “momentum”
coordinates over more familiar coordinates used in elementary differential
geometry.

REMARK 2.1. It is a pleasant, instructive exercise to write out the Laplace-
Beltrami operator of g, in terms of ¢. The resulting formula facilitates the
explicit study of spectral geometry, see for example [3] and [7].

COMPLETENESS AND EXTENDIBILITY

Let ¢: (a,8) — R be a momentum profile, and assume g, is defined
on a dense subset of a smooth, complete surface of revolution. Each end of
the momentum interval corresponds to a topological end of X. The “virtual”
level set {7 = B} corresponds to the orbit {r = b} in P'. If 3 is finite and
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©(B) > 0, then the metric extends to a metric with a larger open momentum
interval, so if 5 < co then () = 0. Geometrically this means the orbits
must “close up” at an end of finite area, though the virtual orbit may be at
finite or infinite distance. If the orbit {7 = §} is at finite distance, it must be
a fixed point (not a circle), so b = co. Similar remarks hold for the virtual
level set {T = a}.

If 3 = oo, then the metric is complete at the corresponding end if and
only if

* dx

n Vel

diverges. For a rational profile ¢, the integral diverges if and only if ¢
grows no faster than quadratically as 7 — co. Analogous observations hold
if @ = —o00.

Suppose [ is finite, and that ¢(8) = 0 but ¢'(8) # 0. Equation (2.6)
implies that ¢ is unbounded near {7 = (3}, which means the end contains
a fixed point of the circle action!). Assume without loss of generality that
B = 0, and consider the zone {—¢ < 7 < 0} C D, whose boundary has
length 27y/(—¢). Let s be the geodesic distance from the fixed point to the
boundary. The cone angle ¢ at the fixed point is defined to be

é = lim ————ZWW,

e—0t S

and the metric extends smoothly if and only if ¢ = 27. L’Hopital’s rule gives

(2.11) ¢=—¢' B,

so the metric is smooth if and only if () = —2. By symmetry, if —oo < o
and the end {7 = a} is at finite distance, then the metric extends smoothly
to the fixed point if and only if ¢'(a) = 2.

In the remaining case, ¢ and ¢’ both vanish at 5. By assumption, the
profile has a C* extension to a neighborhood of 3, so Taylor’s theorem implies

©"(B)
2

near (. This in turn implies that the arc length integral diverges near 3, so
the end is complete.

The respective possibilities, with 3 = co or 1, are depicted in Figure 2.2.

o(1) = (r — B)* + o(r — [5)?

l) Alternatively, (2.7) implies the distance to the end is finite, so the end is a puncture as
noted previously.
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0757 Jem =27
0.50 T
p2(7) = 27(1 — 7)
0.25
@©3(r) = 27(1 — 7)?

0.0 0.5 1.0

FIGURE 2.2

Momentum profiles inducing smooth, complete metrics

CONICAL SINGULARITIES AND THE GAUSS-BONNET THEOREM. At a smooth
point of X, the curvature form is K dA, the Gaussian curvature times the
area form. If v is an isolated conical singularity, the angular defect at v
1s 27 — ¢, and the curvature form at v is defined to be the angular defect
~ times the J-function supported at v. Equation (2.11) yields the following
observation.

PROPOSITION 2.2, If ¢ = 0 and ¢’ # 0 at a finite endpoint of the
momentum interval, then the angular defect at the corresponding fixed point

of X is (2 - '|90'|)7r..

In action-angle coordinates, the Gauss-Bonnet theorem for confpact surfaces
~ of revolution is the fundamental theorem of calculus. After scaling and
translating we may assume the momentum interval is [—/3,3]. By (2.10)
and PropoSition_ 2.2, the total curvature of X 1s

B

/,KdA =2+ B)r+ (2- go’(—ﬁ))w—i—Z?r/ —1p =4rx.
) ~B

The Kazdan-Warner integrability condition [5] has a similar interpretation:
The Gaussian curvature K = x(7) 1s the second derivative of a function that
~ vanishes at 7 = £0.
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CLASSICAL SURFACES OF REVOLUTION

Not every abstract surface of revolution embeds in R>, even if the image is -
not assumed to be rotationally symmetric : A famous theorem of Hilbert asserts:

that the hyperbolic plane cannot even be immersed isometrically in' R?. There
is, however, an elementary criterion for embedability, assuming the image 1is
a classical surface of revolution:

PROPOSITION 2.3. Let X be the abstract surface of revolution associated
to a momentum profile . A portion of X embeds in R® as a surface of
revolution if and only if |¢'| <2 on the corresponding part of the momentum
interval.

Proof. Let & be a positive function, and let X be the abstract surface
obtained by revolving the graph of & about the x-axis in R>®. The profile
gives the length squared of %, namely ¢(7) = £(x)?. Differentiating with
respect to x,

o'(r) - T'(0) = 26(0) - £'(x) .

Equating the area elements in the classical and momentum descriptions,

dr = Ex)\/ 1+ & (x)%dx.

Combining these observations,

Sy KW o’

This implies |¢'(7)| <2, with equality if and only if |£'(x)| = co.

or )=

Several examples are depicted in Section 3.

SUMMARY

For the reader’s convenience, here is a concise account of the momentum
construction for surfaces of revolution.

DEFINITION 2.4. Let I C R be an interval, possibly unbounded. A

momentum profile is a function of class C? on a neighborhood of the closure
of I that is positive on the interior of I.
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THEOREM 2.5. Let ¢: 1 — R be a momentum profile. There exists an
abstract surface of revolution (D, g,), unique up to isometry, such that

o The image of the moment map 7: D — R is I.
o The orbit {T = 19} has length 2w/ o(1) for all 9 € 1.

The Gaussian curvature of g, is K = —%(,0’ (1) wherever the metric is smooth,
and the angular defect at a fixed point is (2 — |¢'|)w. The metric is complete
at an end {T = B} if and only if one of the following holds :

Fodx
(INFINITE-AREA END) |83| = oo and

., V)

(SMOOTH EXTENSION) [ is finite, p(6) =0, and |¢'(6)| = 2.
(FINITE-AREA END) B is finite, o(6) =0, and ¢'(B) = 0.

diverges.

3. METRICS OF SPECIFIED CURVATURE

In momentum coordinates, specifying the Gaussian curvature of a metric
in terms of zonal area is a matter of integrating twice. The construction is
therefore well-adapted to exhibiting a variety of interesting metrics.

CONSTANT CURVATURE

Theorem 2.5 and Proposition 2.3 give a simple classification of surfaces
of revolution that have constant Gaussian curvature, together with an easy
characterization of when the abstract surface embeds in R® ‘as a surface
of revolution. Many surfaces of constant negative curvature (such as the
pseudosphere) are seen to be portions of complete abstract surfaces of
revolution.

SMOOTH, COMPLETE METRICS. A metric of constant Gaussian curvature
corresponds to a quadratic profile ¢, and the metric is smooth and complete
if and only if

e >0 on R, or
e | (B)] =2 at some (hence each) root of ¢.

Table 3.1 lists smooth, complete surfaces of revolution that have constant
Gaussian curvature. Most of these metrics embed only partially in R* as
surfaces of revolution, and no zone of the Poincaré metric (on the disk A)
embeds as a surface of revolution. The pseudosphere is the zone in the
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punctured disk A* corresponding to the momentum interval (0,1/c?). In the
last column, the annulus is determined up to conformal equivalence by the
ratio of the inner and outer radii. Each metric is scaled to have curvature +c*
or 0, metrics are grouped by the sign of their curvature, and the momentum
profiles are translated to have o = 0 when possible. For each integrand 1in
Table 3.1, the integrals in equation (2.6) are elementary, and the 7 integrals
can be inverted explicitly.

TABLE 3.1
Smooth, complete, constant-curvature surfaces of revolution

P! C (A A A% Annulus

o(T) || 27 — Ar? 27 A2 21 + 3277 cr? A2 + 2

7€ | [0,2¢77] [0, o0) R [0, 00) (0,00) | (—00,00)

te | [00,00] || [-00,00) | R | [-00,0) | (=00,0) | (=5 )

OTHER EXAMPLES. Every quadratic polynomial that is positive somewhere
gives rise to a surface of constant Gaussian curvature via the momentum
construction, though with exactly one exception (the round sphere) the
resulting metric is singular and/or not embedable in R®. There is a pleasant
correspondence between quadratic profiles and the “standard zoo” presented
in elementary differential geometry. Figures 3.1 and 3.2 depict the negative
curvature case; positive curvature is similar.

A remarkable family arises from quadratic profiles ¢(7) = A\? — 72 with
A > 1. At their smooth points these metrics have unit curvature, yet they admit
closed geodesics of length 2w A > 27, in seeming contradiction with Myers’
theorem. The discrepancy is resolved by (2.11): The conical singularities at
the fixed points carry negative curvature. Viewing these examples as surfaces
in R?, the explanation is different: The portion that embeds is not complete.

AREA, DISTANCE, AND ORBIT LENGTH. An abstract surface of revolution
is said to have bounded orbits if the profile is a bounded function. If a surface
has bounded orbits, and if an end of the surface has finite length, then the
end also has finite area. Inversely, if the orbits are not bounded at an end of
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FIGURE 3.1

Quadratic momentum profiles; the heavy portion of each defines a metric
that embeds in R3 as a surface of revolution, see Figure 3.2

infinite length, then the end necessarily has infinite area. Remarkably, these
are the only general conclusions that can be drawn about abstract surfaces
of revolution; the intuition furnished by surfaces of revolution in R3 can be
misleading ! Two examples illustrate what can happen:

e The data I = [0,00), ¢(7) = 27 + 7> define a metric of infinite area on
the disk, in which the distance to the edge of the disk is finite.

e The data I =[0,1), w(r) = 27/(1 — 7) give a metric on the disk with
unbounded orbits but having finite area.

.

Neither metric is complete, and neither can be extended non-trivially.

EXTREMAL METRICS

The Calabi energy of a metric g is the integral of the square of the
Gaussian curvature,

E(g) = /KZdA.
z

A metric is extremal in the sense of Calabi if the metric is critical for the
energy among all smooth metrics of fixed area.
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I

FIGURE 3.2

The geometric profiles that correspond to the momentum profiles in Figure 3.1.
Each generates a surface of constant curvature —1

THE CALABI ENERGY FOR METRICS WITH CONICAL SINGULARITIES. The
space of surfaces of revolution of area 4r is identified with the space of
momentum profiles ¢: [—1,1] — R. Assume from now on that profiles are
of class C* and vanish at 1. The Gaussian curvature is K = —3¢" () for
T € (—1,1), while the curvature form is the distribution

KdA =r|(2+¢ 1) + (2 @' (~D)8 | — 3e"(r)dA.
The Calabi energy is the integral of K?>dA over X:

v

1
(3.1) E(gy) = 5 {—90”(1)(2 +¢'(1) —"(=D(2 = ¢'(-1D)) +/ (90")2} :
—1

Differentiating with respect to ¢ and integrating by parts twice yields

2. 7 7 1ol Y/ 1 ! .
32 —Egy)==2(¢"(D+¢"(=1) + ("¢ — ¢’y )1 1+2/ eV .
- —1

For variations supported in (—1,1), the boundary term contributes nothing.
Consequently, g, is extremal only if ¢ is a cubic polynomial.

REMARK 3.1. The Euler-Lagrange equation (due to Calabi [2]) for a
smooth extremal metric on a compact holomorphic manifold is simple and
striking: The scalar curvature of the metric is a holomorphy potential —
a function whose gradient is a holomorphic vector field. To see how this
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condition is related to ¢ being cubic, observe first that ¢ is cubic if and only
if the Gaussian curvature (a.k.a. the scalar curvature, since X is a complex
curve) is an affine function of 7. But the complex gradient of 7 is the
holomorphic vector field w—a%. Conversely, affine functions of 7 are the only
S!-invariant functions with holomorphic gradient, for if f(7) is a holomorphy
potential on P!, then f/(7) is a global holomorphic function, hence constant.

Calabi [2] showed that the round metric is the only smooth extremal metric
of area 47 on the sphere. This fact is easily recovered for surfaces of revolution.
Smoothness at the ends of the momentum interval means ¢'(£1) = F2. If the
profile is not quadratic, there exists # > 1 such that o(7) = c(1—72)(B - 7).
This implies |¢'(—=1)| # |¢’(1)|, so the metric is not smooth.

Equation (3.2) contains an additional condition for extremality,

1
(3.3) 2"+ " D) + "¢ — '] =0 forall ¢,
=]

which says that the energy supported at the fixed points is constant infinites-
imally, a condition on the domain of the energy functional as much as a
restriction on (. Without some constraint on the space of metrics, (3.3)
is not satisfied, even for the round metric. Indeed, the family of profiles
(1) = c(1 — 72), with ¢ > 0, determines a family of metrics for which the
curvature concentrates at the fixed points as ¢ — 0, and the energy does not
achieve its infimum.

o(r) =11+ — 7Y

S -
T ot

—1.0 —-0.5 0.0 0.5 1.0

FIGURE 3.3

A cubic momentum profile defining a smooth metric

Two natural constraints on the variation are:
e The energy carried by each end is fixed, so (3.3) holds by fiat.
e The cone angles are fixed, i.e., <,'o’ vanishes at the endpoints.
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When the energy carried by each end is fixed, every metric of constant
curvature is critical. In addition, every cubic polynomial

(1) =c(l+ 7)1 —7)B —7)

with 8 > 1 and ¢ > 0 gives rise to a critical metric. Among these is a
unique smooth metric, corresponding to the profile ¢(7) = %(1 + 7)1 — 7).
The metric g, is defined on C and has area 47. Because lo/'(T)] < 2 for
—1 < 7 < 1 (with equality if and only if 7 = —1), the surface (C, g,,) embeds
isometrically in R?, as a “teardrop” of radius —4_ and with an infinitely long

33
tail, Figure 3.4.

y=£&x

FIGURE 3.4
The embedded geometric profile

Under the weaker restriction that the variation fixes cone angles, the round
metric is critical, but is the only such metric. Indeed, (3.3) becomes

1
—2(¢" (D +¢"(=D) = (¥'¢")|

1:O for all ¢ .

Since ¢ is cubic, there exist constants a; such that ¢'(7) = a; +2a,7+3as72.
The metric closes up at both ends, so f_ll o' =0, or a; +az = 0. A short
calculation shows that

(az+ay+ D@ " () + (—az +ay + 1) (=1) =0 for all ¢ .

Consequently, a3 = a; + 1 = 0; this means ¢ is a quadratic polynomial with
leading coefficient —1 that vanishes at +1, so g, is the round metric.
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literature. An instance of the integral transform (2.6) appears in a remark of
Calabi [1]. The construction as treated in this note perhaps owes its biggest
debt to a paper of Koiso and Sakane [6], in which momentum coordinates are
used to construct positive Finstein-Kihler metrics. The paper [4] is in part an
attempt to frame various differential-geometric constructions in “momentum”
language, while simultaneously unifying and generalizing existing results. The
momentum construction for surfaces of revolution is elementary, but seems not
to be widely appreciated. It is hoped that the present note will help popularize
this little gem of differential geometry.
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