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12.2 Proof of Theorem 12.4

Lemma 12.5. Let (r, dr) be an "Si-forest. Let if be a weakly bi-Lipschitz
forest-map of (T, dr). Let (K^,f,crt) be the mapping-telescope of (if,T),
equipped with a structure of forest-stack as defined in Section 2. Then the

semi-flow (c?)reR+ is a bounded-cancellation and bounded-dilatation semi-flow
with respect to any horizontal dr -metric (see Lemma 12.1).

Proof. The horizontal metric TL agrees with the metric dr on all the strata

f~l(n), n G Z (see Lemma 12.1). Consider any horizontal geodesic g in the

stratum /-1(0). If if is weakly bi-Lipschitz with constants po and Ko, then

for any integer n >0,we have \[g]n\n > -prM0 - ^o(Ar + At +...+ 1).
^0 M0 ^0

Since 0 < — < 1, the sum tends to A as n -> +00. Setting \_ — an(j
Mo ' Mo-1 Mo

K Kojppfj, this proves the inequality of item (1) for horizontal geodesies

in f~l(n), n G Z, and an integer time t. For the case in which t is any
positive real number and g G f~l(r), r any real number, just decompose

at crt-m O aE[t-(E[r]+i-r)] 0 cTE[r}+\-r- The map at is a homeomorphism
from f~l(r) onto f~l(r+t) for any t G [0,E[r] + l — r). That is, for any real r,
\Wr+t\rli — \&t(g)\r+t for t C [O^trj + l — r). The monotonicity of the maps
lrj9 (see Lemma 12.1, item (2)) implies, for any r and t G [0,E[r] + 1 — r),
that |crf(gr)jr+f — ~^\d\r- The conclusion follows.

LEMMA 12.6. With the assumptions and notation of Lemma 12.5, if the

map if is a (strongly) hyperbolic forest-map of (r, dr) then the semi-flow
(ch)?<ER+ i-s (strongly) hyperbolic with respect to any horizontal dr-metric.

The proof is similar to that of Lemma 12.5.

Proof of Theorem 12.4. By Lemmas 12.5 and 12.6, a mapping-telescope
admits a structure of forest-stack (X,/, au TL) with horizontal metric TL such

that the semi-flow (ct?)?gR+ is a strongly hyperbolic semi-flow with respect
to TL. Hence Theorem 4.4 implies Theorem 12.4.

13. About mapping-torus groups

We first recall the definition of a hyperbolic endomorphism of a group
introduced by Gromov [19].



HYPERBOLICITY OF MAPPING-TORUS GROUPS AND SPACES 299

Definition 13.1 ([19], [3]). An injective endomorphism a of the rank

n free group Fn is hyperbolic if there exist Xa > I and ja > 0 such that

for any w £ Fn, either Aa|w| < \ùîa(w)\ or w admits a preimage a~Ja(w)

such that \a\w\ < \a~ja(w)|, where | | denotes the usual word-metric.

We recall that a subgroup H in a group G is malnormal if w~1Hwf]H {1}
for any element w ^ H of G. We state our theorem about mapping-torus

groups as follows:

THEOREM 13.2. Let a be an injective hyperbolic endomorphism of the

rank n free group Fn. If the image of a is a malnormal subgroup of Fn then

the mapping-torus group Ga (x\,... ,xn,t \ t~lxp a(xi), i 1,...,n) is

a hyperbolic group.

13.1 Relationships with mapping-telescopes

We consider the rank n free group Fn (at, ,xn). Let a be an injective
endomorphism of Fn. Let Ga (xi,..., x„, t ; t~1xit a(x,;), / — 1

be the mapping-torus group of (a,Fn). We consider the Cayley graph T
associated to the given system of generators. Let / be a loop in T whose

associated word in the edges of T reads a relation t~1Xita(xi)~l. We attach a

2-cell by its boundary circle along any such loop /. The resulting topological
space is a 2-complex. This is the Cayley complex of the mapping-torus group
Ga for the given presentation.

Let us check that the above Cayley complex is a mapping-telescope of
a forest-map. We consider the rose IZn with n petals. We label each edge

by a generator xt of Fn. We denote by f the simplicial map on lZn such

that f(xi) is a locally injective path whose associated word in the edges of
lZn reads a(xj). Let us denote by T the universal covering of 7^ (T is
a tree) and by it : T -a !Zn the associated covering-map. We denote by

a simplicial lift of f to T, that is n of) ip ott We consider the

mapping-torus of (^,7Zn), i.e. the 2-complex lZn x [0, l]/(x, 1) ~ (^(jc),0).
Then the universal covering of this mapping-torus is the mapping-telescope
of i/j: F —> F, where F and f are defined as follows:

• We denote by I the set of integers from 1 to Card(Fn/Im(oO) •

The different classes are written Im(a), i — 0,1,.... We denote by
7: I -E {wo,w1,...} the bijection. Then the connected components of F
are in bijection with NCard(/). Each connected component is the image, by a
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bijection /x, of a sequence of Card(J) integers. Each connected component
ß(x0,xi,...) of F is homeomorphic to T via ß(XQ,Xu.,.) : p(x0,xi,...) —^ 7\

• We define the restriction of f to any connected component /x((x0, xi,...))
as follows:

If Card(Z) < +00 then

y I

f -^15 • • • ^ M(C^T Card(/) ] 7 -^15 • • •

where j < Card(I) satisfies £[Ca*^(/)] — k Card(7) + j.
If Card(/) +00 then

V;|/.4((A"(),Xi :

fJL((XQ,Xl,...)) -4 /x((xbX2,

-> (l(xo)ß(xlXu...^P(xo,xu...))(x)

The mapping-torus of (xjj,Tln) is a 2-complex whose 1-skeleton is
the rose with n + 1 petals in bijection with {x\, There is

one 2-cell for each relation r^x/ta^x;)-1. Thus the universal covering
described above is the Cayley complex for Ga with the presentation
Ga (x\,... ,xnjt ; ?_1x/£ ö(xf), 1= 1,..», n). We have thus proved

LEMMA 13.3. Let a be an injective endomorphism of Fn (xi,... ,xn).
Ga (xi,... ,xw, £ ; f^x/f a(x/), i 1,..., xz) be the mapping-torus

group of a. Let C(Ga) be the Cayley complex of Ga for the given presentation.
Then C(Ga) is the mapping-telescope of a forest-map.

Remark 13.4. If the endomorphism a is an automorphism then the

above Cayley complex is the mapping-telescope of a tree-map. The tree is

the universal covering of the rose with n petals. If the endomorphism a is

not injective then some element w e Fn satisfies w — 1 in Ga ; the above

construction fails because of the corresponding loops in the Cayley graph.

Let a be an injective free group endomorphism. Let Ga be the mapping-
torus group of a. Let C(Ga) be the Cayley complex of Ga for the usual
presentation Ga (xi,... ,xw, t ; t~xx(t — a(x/), i 1,..., n). By Lemma 13.3,

C(Ga) is a mapping-telescope of a forest-map. We now want to see what

happens with respect to metrics and dynamics. The Cayley graph of a group
is equipped with a metric which makes each edge isometric to the interval

(0,1). More generally, given a graph T, we call standard metric, and denote
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by dp, such a metric on T. We will call mapping-telescope standard metric

any mapping-telescope dp-metric on C(Ga).

LEMMA 13.5. The mapping-torus group Ga of an injective free group
endomorphism acts cocompactly, properly discontinuously and isometrically

on the Cay ley complex C{Ga) equipped with any mapping-telescope standard

metric.

Proof We consider the usual action by left translations of the group on
its Cayley graph. This action is extended in a natural way to a free action on

the Cayley complex C(Ga). Let / denote the map giving the strata for the

structure of forest-stack of C(Ga), see Lemma 13.3. For a mapping-telescope
metric, all the strata f~l{r) and /_1(r+ 1) are isometric. And for a mapping-
telescope standard metric all the strata f~l(n), ne Z, are equipped with the

standard metric. This readily implies that the above action is isometric.

13.2 Free group endomorphisms and forest-maps

The main point of Lemma 13.6 below is the so-called 'bounded-cancellation
lemma' of [7] for free group automorphisms, and of [10] for the injective free

group endomorphisms.

LEMMA 13.6. Let a be an injective free group endomorphism. Let F and
0 be the forest and the forest-map on F given by Lemma 13.3. Then 0 is a
weakly bi-Lipschitz forest-map of F equipped with the standard metric <fF.

Proof. If w is any element in Fn (xi,... ,x„), and | |F denotes the
word-metric on Fn, then \a(w)\Fn < (max/^...^ j £*(*,•) |Fjn)MFf„ • BY definition

of the standard metric, and setting max^.^ \a(Xi)\Fn, the map 0
satisfies dsF(f(x),f(y)) < p,0dsF(x,y) for any pair of vertices x, y. If x, y are
not vertices, then they are joined in their stratum by a horizontal geodesic
which is the concatenation of a path between two vertices, with two proper
subsets of edges. By construction and simpliciality of 0, proper subsets of
edges are dilated by a bounded factor when applying 0, so that the conclusion
follows for the upper bound.

If w is any element in Fn then

Setting im max,-=li...in I a~\xi)\Kweget |a(w)|Fj> > Therefore

dsF(ip(x),ip(y])) > ydsF(x,y) for any pair of vertices The inequality
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for all points x, y does not follow as easily as for the upper bound,
since the map ^ might identify points, and this could make the distance
decrease sharply. However, assume the existence of a constant Kq such that

ip(x) — ijj(y) => dsF(x,y) < Kq. Any geodesic in F is the concatenation
of a geodesic between two vertices with two proper subsets of edges

of F. Thus the inequality dsF{f>{x)ff)(y)) > ~dsF{x,y) — 2Kq follows in
a straightforward way from the preceding assertions. Injective free group
endomorphisms satisfy the so-called 'bounded-cancellation lemma' (see [10],
and [7] for the particular case of automorphisms), i.e. there exists Aa > 0

such that \a(wiW2)\F > \a(w\)\F + \a(w2)\Fn — Aa for any W\,W2 in Fn

with \w\W2\Fn \w\ \F +\w2\Fn. This inequality gives a constant Kq Aa +2
as required above, i.e. such that, if f>(x) iß(y) then dsF{x,y) < Kq. Setting

fjb max(/io,Mi) and K 2Kq, we get Lemma 13.6.

LEMMA 13.7. With the assumptions and notation of Lemma 13.6,

1) If a is hyperbolic then the forest-map is hyperbolic.

2) If a is hyperbolic and its image Im(a) is malnormal, then the forest-

map is strongly hyperbolic.

Proof. (1) is easy to check. Let us prove (2). The notation used is that

introduced in Section 13 when defining the forest F and the map fl. If the

map is not strongly hyperbolic, there exists an infinite sequence of pairs of
connected components (7), T[) such that 7) and T[ are identified under f
along a geodesic gt and the length of gt tends to +oo as / —y +oo. Thus

there exists an infinite number of elements (uh u[) G Fn — Im(a) x Fn — Im(a)
such that some geodesic word aymfoi (resp. a^w^) connects two vertices

associated to elements in ^Tm(a) (resp. in u[ Im(oO) where the length of the

wi's tends to +oo as i —> +oo.
Observe that in particular aiWibi G Im(a), a^Wfb'i G Im(5f), whereas

aiWib'i ^ Im(ctO and a-wfi £ Im(a) because they carry an element of
Uilm(a) (resp. u[ Im(a)) to an element of w-Im(a) (resp. of Mjlm(a)). The

lengths of the ah bi, aF b\ can be assumed to be at most the maximum

of the lengths of the images under a of the generators of Fn, which is

finite. Since there are only a finite number of pairs of elements of bounded

lengths, a same pair ah bi (resp. a'F b\) appears an infinite number of
times when listing the sequence of words atWibi (resp. a^Wib'i). The same

finiteness argument then gives two words uj\ C uj2 with to2 uuj\ such

that a^jbi G Im(a), a'jUjb'j G Im(a), aiujfo'j ^ lm(a) and a'jujjbj ^ Im(a),

j —
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Thus aiuj\bibjluj\ G Im(a), a'jLOib'jb'7 lcol 1lo lafj G Im(a),

& Im(«). Now (aiUJ~la'yl) a^'1ajl(a^'1df1)
a'jüj^a'J1 G Im(a), whereas aiuo~la!7

1

^ Im(a) and aiuj~la1
1

G Im(a). We

thus get a contradiction to the malnormality of Im(a) in Fn. This completes

the proof.

13.3 Proof of Theorem 13.2

From Lemmas 13.6 and 13.7, the Cayley complex C(Ga) is the mapping-

telescope of a strongly hyperbolic forest-map, equipped with the standard

metric. A Cayley complex is connected. Thus, from Theorem 12.4, C(Ga) is

a Gromov-hyperbolic metric space for any mapping-telescope standard metric.

From Lemma 13.5 the group Ga acts cocompactly, properly discontinuously
and isometrically on C(Ga) equipped with a mapping-telescope standard

metric. A classical lemma of geometric group theory (usually attributed to

Effremovich, Svàrc, Milnor - see [19] or [17] for instance), applied to quasi

geodesic metric spaces, tells us that Ga and C(Ga) are quasi-isometric so

that Ga is a hyperbolic group.

Remark 13.8. Another way of stating our main theorem about 'forest-

stacks', using the language of trees of spaces, goes roughly as follows: "An
oriented R-tree of R-trees with the gluing-maps satisfying the conditions

of hyperbolicity and strong hyperbolicity with uniform constants is Gromov-

hyperbolic." Here 'oriented R-tree' means an R-tree T equipped with an

orientation going from the domain to the image of each attaching-map, and

a surjective continuous map /: T -» R respecting this orientation. As a

corollary of our theorem, and in order to illustrate it, we chose to concentrate

on mapping-telescopes. We could as well consider spaces similar to mapping-
telescopes but where we allow the attaching-maps not to be the same at each

step. Our only requirement is to have uniform constants of quasi-isometry,
hyperbolicity and so on. Also, with respect to groups, a corollary could have
been stated dealing with HNN-extensions rather than just semi-direct products.

Another result which easily follows from our work could be more or less
stated as follows. "Let T be a tree of spaces Xi9 i 0,1,... Let iß: T -a T
be a map of T such that the mapping-telescope of each Xt under iß is

Gromov-hyperbolic. If iß induces a hyperbolic map on the tree resulting of
the collapsing of each Xt to a point, then the mapping-telescope of the tree
of spaces T under iß is Gromov-hyperbolic." We leave the precise statement
of such corollaries to the reader. Together with [14] where a new proof of the
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Bestvina-Feighn theorem is given for mapping-tori of surface groups, the last

one gives, thanks to [26], a new proof of the full version of the Combination
Theorem for mapping-tori of hyperbolic groups, namely : "If G is a hyperbolic
group and ce is a hyperbolic automorphism of G, then Gxi^Z is a hyperbolic
group."
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