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UNE PREUVE DU THEOREME DE LIOUVILLE
EN GEOMETRIE CONFORME DANS LE CAS ANALYTIQUE

par Charles FRANCES

1. INTRODUCTION

Le théoréme de Liouville est un résultat fondamental de géométrie
conforme, que I’on peut énoncer comme suit:

THEOREME 1 (Liouville). Une application conforme entre ouverts de R"
(n > 3) est obtenue comme restriction d’une composée de similitudes et
d’inversions.

On obtient comme corollaire que tout difféomorphisme conforme entre
deux ouverts de la sphere S" est la restriction d’un (unique) difféomorphisme
conforme global de S™*. Ce résultat peut aussi se voir comme une manifestation
particuliere d’un phénomene général: la rigidité des applications conformes
en dimension supérieure ou égale a trois (une exposition tres générale de
ces propriétés de rigidité est donnée dans [St]). On dispose de nombreuses
démonstrations du théoreme de Liouville (voir entre autres [Sp], [J] ou [M])
et dans la plupart des cas, elles s’articulent en deux parties. On commence
par montrer que si un difféomorphisme f entre ouverts de R" est conforme,
il envoie localement les (n — 1)-spheres sur des (n — 1)-spheres (cela signifie
que tout point du domaine de définition de f posseéde un voisinage tel que
toute (n — 1)-sphere incluse dans ce voisinage est envoyée par f sur une
(n — 1)-sphere). Une fois ce fait €tabli, on conclut de fagon classique grice a
un lemme did a Mobius.

LEMME 2 (Mobius). Si une application [ entre deux ouverts U et V de
R" envoie localement les (n—1)-spheres de U sur des (n— 1)-sphéres de V,
alors f est la restriction a U d’une composée de similitudes et d’inversions.
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Nous renvoyons a [Sp] (vol.3, p.310) pour une preuve de ce lemme.

Précisons que le cceur de la démonstration du théoréme de Liouville réside
vraiment dans la premiere étape, consistant a prouver qu'un difféomorphisme
conforme envoie localement les (n — 1)-spheres sur des (n — 1)-spheres. Ce
résultat est généralement obtenu par des calculs et il est difficile d’isoler
une raison conceptuelle pour laquelle il est vrai. Aussi se propose-t-on de
faire le lien entre cette propriété et un résultat profond mais a priori sans
rapport : ’invariance conforme des géodésiques isotropes en géométrie pseudo-
riemannienne ou riemannienne complexe.

Notre preuve s’applique a des transformations conformes analytiques entre
ouverts de R". Les preuves classiques (par exemple [M]) requierent en général
une régularité C° et on peut trouver dans [H] une preuve plus difficile qui
traite le cas des applications de classe C!.

2. INVARIANCE CONFORME DES GEODESIQUES ISOTROPES

Rappelons qu’une métrique pseudo-riemannienne g sur une variété M est
la donnée d’une forme quadratique non dégénérée de signature (p,q) sur
chaque espace tangent a M. Nous supposons par la suite que g n’est pas
riemannienne, c’est-a-dire que ni p ni g ne sont nuls.

Une géodésique ¢ — c(f) pour la métrique g est qualifiée d’isotrope si
pour tout ¢ ol c(f) est défini, on a g.»(c’(1),c'(r)) = 0. Si I’on se donne une
métrique ¢’ dans la classe conforme de g (c’est a dire ¢’ = ¢“g pour o une
fonction de M dans R de méme régularité que g), les géodésiques de ¢’ et
de ¢ n’ont en général aucun rapport. Néanmoins, on peut montrer le

THEOREME 3. Soit (M,g) une variété pseudo-riemannienne, alors les
géodésiques isotropes sont les mémes, en tant que lieux géométriques, pour
toutes les métriques de la classe conforme de g.

Remarquons que ce théoreme ne dit pas que les géodésiques isotropes sont
les mémes en tant que courbes paramétrées.

Preuve. Nous rappelons sommairement comment on peut voir le flot
géodésique sur une variété comme un flot hamiltonien (le lecteur souhaitant
plus de détails peut se référer a [AM]). On note T*M le fibré cotangent
de M et w la forme symplectique standard sur 7°M. La donnée d’une
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