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REMARK 6.2. Z. Shahbazi has proved that if G is a gerbe with connection
over a manifold M, with curvature 3-form 7n, and ®: N — M is a map with
®*n 4+ dw = 0, then the pull-back gerbe ®*G admits a pseudo-line bundle,
with w as its error 2-form, if and only if the pair (n,w) defines an integral
element of the relative de Rham cohomology H°(®,R). This means that for
any smooth 2-cycle S C N, and any smooth 3-chain B C M with boundary
®(S), one must have [,7 — [ cw € Z. The particular case where the target
of ®@ is a Lie group G is relevant for the pre-quantization of group-valued
moment maps [1].

APPENDIX A. PROOF OF LEMMA 4.4

In this Appendix we prove Lemma 4.4, concerning the construction of a
certain cover U; of M from a given cover V;. Write M = [[,A; where

Ar=1vAlUv

‘Notice that A; C | sc1Ar. By induction on the cardinality k& = |I| we will
construct open sets U; C V;, having the following properties :

(a) the closure U; does not meet U; for |J| < |I| unless J C I,

(b) each A; is contained in the union of U; with J C I.

The induction starts at k = 0, taking Uz = . Suppose we have

constructed open sets U; with U; C V; for |I]| < k, such that the properties
(a), (b) hold for all |I| < k. For |I| = k consider the subsets

B; ::A1\< U UJ)

JCIL)J|<k

Note that (unlike A;) the set By is closed. B; does not meet A; unless I C J,
and it also does not meet U; for |J| < k unless J C I. That is, B; is disjoint

from |
C] = U UJ U U AK .
JELI|T|<k KPI

Choose open sets U; for |I| = k with By C Uy C U; C M\Cy, and such
that the closures of the sets U; for distinct I with |I| = k are disjoint. The
new collection of subsets will satisfy the properties (a), (b) for 1| < k. We
next show that Vi = M\ J,5 Uy is a cover of M. Write M = [, D; with
D; = U’\UIJ|<|1| Uy. Then D;NU; = @ unless I C J, so D; is contained
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in each V| with i € 1. In particular | J; V/ = M. Finally V! C {J,5; U; C V;.
This completes the proof of Lemma 4.4. Note that if the V; were invariant
under an action of a compact group G, the U; could be taken G-invariant

also.
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