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geodesic, with the same endpoints, in fine position with respect to /, which
is C73(A(|h],,J,J"),J,J")-close to g and which is a stair or the concatenation
of two stairs. Lemma 6.4, together with Lemma 5.4 applied as above, then
provide Cg4(B(|h|,,J,J"),B(|h|,,J,J")) and

D(‘hlry']a J/) — C5.4(17 37 C6.4(B(|hir>']7 J/)aB(ih‘r7J7 J/))

such that this, or these, stair(s) are D(|h| ,J,J")-close to the orbit-segments
between 4 and their endpoints. We conclude that g is Cr3(A(|h|,,J,J"),J,J)+
D(|h|,,J,J")-close to these orbit-segments. The last point of the proposition
is obvious.  []

9. PUTTING PATHS IN FINE POSITION

PROPOSITION 9.1. Let h be a horizontal geodesic. Let g be a straight
(J,J")-quasi geodesic, which joins the future or past orbits of the endpoints
of h. There exist a constant Cy1(J,J") and a (Co1(J,J"), Cy1(J,J"))-quasi
geodesic G which is Co1(J,J")-close to g, which has the same endpoints as
g, and which is in fine position with respect to h.

Proof. We consider a maximal subpath ¢ of g whose endpoints lie in
the future or past orbits of some points in &, and such that no other point
of ¢’ satisfies this property. Consider any maximal —-hole » in ¢, and let
I denote the horizontal geodesic between the endpoints of b.

CASE 1. Either I is contained in a cancellation or / is the concatenation
of two horizontal geodesics, each contained in a cancellation.

Lemma 6.7 gives Cg7(J,J) such that, if |I}f(1) > Ceq7(J,J) then I is
dilated in the future after Cq7(J,J")ty. Lemma 5.3 gives Cs3(Cs.7(J,J")) such
that the horizontal length of any horizontal geodesic contained in a cancellation
and dilated in the future after Cs7(J,J)tp is at most Cs3(Ce7(J,J")). By
Lemma 5.4 we get an upper bound Cs 4(Cs.7(J,J"),2, Cs5.3(Cs.7(J,J"))) on the
horizontal length of 1.

CASE 2. There exists another horizontal geodesic in another connected
component of the same stratum whose pulled-tight projection agrees with that
of I after some finite time.

We consider the maximal geodesic preimage I’ of I under TCo.1(J,7)to

which connects two points of b. It admits a decomposition into subpaths 7,
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connecting points in » such that the subpath of b between the endpoints
of each I, is a —-hole. The strong hyperbolicity of the semi-flow implies,
by Lemma 6.7, that the horizontal length of each I, is bounded above by
Ces.7(J,J"). Since ¢ is a (J,J")-quasi geodesic, we get max,ep(f(I) —f(x)) <
JCs7(J, I+ T + Cs7(J,J).

CASE 3. Some subpath of I connects the future or past orbits of points
in h. ‘ .

The only possibility is that / be a pulled-tight 1mage of h,ie. ¢ =0b.
Consider a geodesic preimage I’ of I under oc, ../, between two points in
b. Then proceed as in Case 2, the only difference being that for each subpath
I, either there exists a horizontal geodesic in another connected component
of the same stratum, whose pulled-tight projection agrees with that of I, after
some finite time (this is exactly Case 2), or I, is contained in a cancellation
or in the union of two cancellations, and the arguments are exactly those of
Case 1. The bounded-dilatation property then gives an upper bound on the
horizontal length of 7.

We denote by A(J,J’) the largest of the constants found in Cases 1, 2 and 3.
We denote by A’(J,J) the largest of the constants A(J,J"), C73(A(J,J"),J,J")
and C;,(A(J,J"),J,J). Lemmas 7.2, 7.3 and 7.1 then give B(J,J') =
Ci1(A'(J,J),A'(J,J"), J,J"), such that replacing the maximal —-holes in
g’ by the horizontal geodesic between their endpoints yields a straight
(B(J,J"),B(J,J"))-quasi geodesic stair S, with the same endpoints, which is
A'(J,J")-close to ¢'. Let I’ be a horizontal geodesic between S and a future
or past orbit of some point in %, which is minimal in the sense of inclusion,
i.e. does not contain any subpath connecting S to a future or past orbit of a
point in /4. This horizontal geodesic I’ is a pulled-tight image of a subpath
of S in the stratum considered. It is either contained in a cancellation, or is
the union of two horizontal geodesics contained in a cancellation. Lemma 6.4
gives Cg4(B(J,J"),B(J,J")) such that, if |I’ |f(1,) > C¢.4(B(J,J"),B(J,J")) then
I’ is dilated in the futur after #. From Lemmas 5.3 and 5.4 we get |[I'|;;y <
Cs.4(1,2,Cs3(1)). Therefore S is at horizontal distance at most D(J,J') =
max(Cs.4(B(J,J"), B(J,J")), Cs.4(1,2,Cs3(1))) from a straight stair S(¢g'), with
the same endpoints and in fine position with respect to 4. Lemmas 7.4 and 7.1
then give E(J,J") = C7.1(C7.4(DWJ,J"),B(J,J"),B(J,J")), C;.4(D{J,J"), B(J,J"),
B(J,J"),J,J") such that replacing the maximal subpaths ¢’ as above by
the given stair S(g’) gives a straight (E(J,J'), E(J, J'))-quasi geodesic, with
the same endpoints as ¢, in fine position with respect to A, and which is
D(J,J)-close to g. [
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