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Finalement -, ¥ Efx,n:l | k(s — sm))| < 0o puisque § > 0.
Nous en déduisons le résultat suivant qui contient celui de Baker:

COROLLAIRE 7.5. Soit A un ensemble fini d’entiers > 1 contenant au

moins deux éléments; il existe une infinit¢ de x € F(A) normal en toute base
des que la dimension de Hausdorff de F(A) est > 1/2.

Démonstration. Soit 1/2 < § < dimy F(A), 0 < & < g5325555

entier > 2. Il résulte du corollaire 7.4 appliqué avec s, = ¢" et u = pgs
la mesure de Kaufman portée par F(.A), donnée par le théoréme 1.4, que
I’ensemble

et g un

N,={x¢€ F(A) normal en base q}

est de mesure pleine pour la mesure de probabilité p. Ainsi u( () N,) =1
922

d’ot le corollaire. []

8. COMMENTAIRES ET QUESTIONS

Les mesures de Kaufman ainsi construites possédent deux propriétés
importantes : le comportement holdérien de la fonction de répartition et le
comportement asymptotique précis de la transformée de Fourier. En fait la
seconde propriété, fondamentale ici, découle en partie de la premiere, mais
le comportement holdérien joue un rdle primordial dans I’approche de la
conjecture de Littlewood par Pollington & Velani [14].

Les ensembles F(A), | A] > 2, sont donc des ensembles de multiplicité
stricte, lorsqu’ils possédent une dimension de Hausdorff > 1/2. On peut se
demander si la borne 1/2 est infranchissable ou si elle reléve au contraire
de la construction. La propriété pour un ensemble d’€tre de multiplicit€ peut
paraitre stable: un résultat fameux de Salem & Zygmund (voir [10]) établit,
pour des ensembles de type Cantor a rapport de dissection &, 1’équivalence:

' 1
E est de multiplicité <= - ¢ S

£
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otl S est I’ensemble des nombres de Pisot. L’ensemble S étant fermé, la
propriété est stable pour les petites variations de &. Qu’en est-il pour les
ensembles du type F(A) ? Ceci améne naturellement les questions:

QUESTIONS. Soit A un ensemble fini d’entiers > 1 tel que |A| > 2 et
dimh F (A) =d.

1. F(A) est-il encore de multiplicit€ ?

2. F(A) porte-t-il une mesure dont la décroissance a l'infini est en
O(1/(og|n|)°) pour un § > 17?

Le lien entre la dimension de Hausdorff et la propriété de multiplicité
n’est pas clairement établie puisque des ensembles de dimension de Hausdorff
positive, tel ’ensemble triadique de Cantor, sont annulés par toute mesure de
M, ([10]) tandis que certains autres, de dimension nulle, sont de multiplicit,
ce qui est assez frappant ([2], [3]).
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