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Nous en déduisons le résultat suivant qui contient celui de Baker:

COROLLAIRE 7.5. SozY 4. wn ensemble fini d'entiers > 1 contenant au
moins deux éléments; il existe une infinité de x G F(A) normal en toute base

dès que la dimension de Hausdorff de F(A) est > 1/2.

Démonstration. Soit 1/2 < ô < dinihF(^l), 0 < 5 et un

entier > 2. Il résulte du corollaire 7.4 appliqué avec sn qn et ß /jl£j&

la mesure de Kaufman portée par F(A), donnée par le théorème 1.4, que
l'ensemble

Afq {x e F(A) normal en base q }

est de mesure pleine pour la mesure de probabilité ß. Ainsi ß( p| Afq) 1

q> 2

d'où le corollaire.

8. COMMENTAIRES ET QUESTIONS

Les mesures de Kaufman ainsi construites possèdent deux propriétés

importantes : le comportement hôldérien de la fonction de répartition et le

comportement asymptotique précis de la transformée de Fourier. En fait la
seconde propriété, fondamentale ici, découle en partie de la première, mais

le comportement hôldérien joue un rôle primordial dans l'approche de la

conjecture de Littlewood par Pollington & Velani [14].
Les ensembles F(A), \A\ > 2, sont donc des ensembles de multiplicité

stricte, lorsqu'ils possèdent une dimension de Hausdorff > 1/2. On peut se

demander si la borne 1/2 est infranchissable ou si elle relève au contraire
de la construction. La propriété pour un ensemble d'être de multiplicité peut
paraître stable: un résultat fameux de Salem & Zygmund (voir [10]) établit,

pour des ensembles de type Cantor à rapport de dissection £, l'équivalence:

E est de multiplicité ^ S
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où S est l'ensemble des nombres de Pisot. L'ensemble S étant fermé, la

propriété est stable pour les petites variations de £. Qu'en est-il pour les

ensembles du type F{A) Ceci amène naturellement les questions :

Questions. Soit A un ensemble fini d'entiers > 1 tel que \A\ > 2 et

dimhFQ4) d.
1. F{A) est-il encore de multiplicité?
2. F(A) porte-t-il une mesure dont la décroissance à l'infini est en

C>( 1 /(log |n|)6) pour un 5 > 1

Le lien entre la dimension de Hausdorff et la propriété de multiplicité
n'est pas clairement établie puisque des ensembles de dimension de Hausdorff

positive, tel l'ensemble triadique de Cantor, sont annulés par toute mesure de

Mo ([10]) tandis que certains autres, de dimension nulle, sont de multiplicité,
ce qui est assez frappant ([2], [3]).
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