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ON THE ENTROPY OF HOLOMORPHIC MAPS

by Mikhail GROMOV

Our purpose is to calculate the topological entropy of a holomorphic map
f of the complex projective space CP™ into itself. Every such map is given
by (m + 1) homogeneous polynomials in C"t+1 each of the same degree p,
and the topological degree deg f is equal to p”. When m = 1, the space
CP™ is the Riemann sphere S? and such maps are given by rational functions
of one variable. Geometrically, they are conformal maps $*> — S? of positive
degree.

The topological entropy h(f), defined in the next section, measures the
asymptotic complexity of the iterates f*, and it is usually hard to calculate.

MAIN RESULT. If f: CP™ — CP™ is holomorphic, then

(0.0) h(f) = log(deg f).

REMARKS AND ACKNOWLEDGEMENTS. We prove here only the inequality

(0.1) h(f) < log(deg f).

The opposite statement h(f) > log(deg f) was established by Misiurewicz
and Przytycki [4] for all smooth maps. They proved even more: if f is a
C?-smooth endomorphism of a compact manifold and points having at least d
preimages are dense then h(f) > log(deg f). For example, every smooth map
of zero degree of a closed manifold onto itself has entropy not less than log?2.

Our paper owes very much to Sheldon Newhouse. Inequality (0.1) is a
response to his very first question to me on arriving at IHES. He conjectured
(0.1) in the case m = 1, suggested a possibility of analogous estimates for
real polynomial maps and provided an example for a class of maps R*> — R?
given by polynomials of degree 2. His further interest in the problem forced
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me to write this paper. I also appreciate the hospitality of IHES, which made
possible my involvement in this story. I-am especially thankful to Dennis
Sullivan, who took pains to read the paper and to clean it up of multiple
EeITors.

STRUCTURE OF THE PAPER. We start with a geometric outlook on topolog-
ical entropy and reduce our inequality (0.1) to standard facts about minimal
varieties. We discuss next the real algebraic analogue of (0.1) and a general-
ization to maps. We conclude with an estimate of the entropy involving the
mean curvature.

§1. NOTATION AND DEFINITIONS

For a space X we denote by X* the product X x X x ... x X (k factors).
A graph T over X is by definition an arbitrary set I' C X*. When X is finite
this is the usual definition of an oriented graph (with loops). The graph of a
map X — X gives another example.

For a graph I' we denote by I, C X* the set of Strings (Xi, ..., X, ..., Xk),
x; € X, where each pair (x;,_;,x;) € X* is contained in T.

When X is endowed with a metric, we call e-cubes products in X* of
balls from X of radius ¢. For a set ¥ C X* we denote by Cap, Y the minimal
number of e-cubes needed to cover Y.

, ENTROPY

- Set h(I') = limsup,_, -}glog Cap_ Iy, and A(I) = lime0h.(I), for
I CX>.

When f is an endomorphism X — X, we define its entropy h(f) as the
entropy of its graph I;. If the space X is compact, the definition does not
depend on the choice of the metric [2]. Observe that the entropy of a general
graph I' is equal to the entropy of the shift in I'ox C X*°: I', is the space
of doubly infinite strings (x;)i=... —1,0,1,... With the product topology, and the
shift maps (x;) to (x;41). For finite X, we come to the usual definition of the
Markov shift.

VOLUME

From now on, X is a Riemannian manifold and n = dimT, T Cc X2.
We denote by Vol I'y the n-dimensional volume of I} C Xk ie. the
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n-dimensional Hausdorff measure with respect to the Riemann product metric
in X*. Set |
lov I" = lim sup z log Vol 17 .

k—o0
For an f we set lov f = lov I'y. This is a smooth invariant of f (it does not
depend on the choice of the Riemann metric).
Our invariant “lov” is sometimes more accessible than entropy and for a
holomorphic f we are going to prove that

(1.0) h(f) < lov f .

DENSITY

Denote by Dens.(I'x,v), for v € It C X*, the n-dimensional measure
of the intersection of I'; with the ball (in the Riemannian product metric)
of radius e centered at ~y. Set Dens.(I'y) = infyer, Dens(I'x,7y), and then
lodn, I"' = liminf;_, %log Dens, I'y, and finally

lodnI" = lim lodn. I".

e—0

Observe that Vol > Cap,, Dens, and hence that

(1.1) (V) <lovI —lodnI.

§2. ESTIMATES OF DENSITY

Consider a Riemannian manifold W (it will be X* in the sequel) and an
n-dimensional subvariety V C W. We suppose that the boundary of V (if
there is such) does not intersect the ball B, C W of radius € > 0 centered
at a point vy € V. We suppose also that the injectivity radius of W at v
is at least €, 1.e. the exponential map T,,(W) — W is injective in the e-ball
in T,,(W).

DENSITY OF A MINIMAL VARIETY

If the sectional curvature in B¢ is not greater than K and V is minimal,
then

(2.0) Vol (VNB.,) >C>0,

where the constant C depends on n, K, and €, but does not depend on dim W.
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The proof is given below. This fact is well known and C is equal to the
volume of the e-ball in the n-dimensional space of constant curvature K.
Our application of (2.0) to complex geometry is based on

FEDERER’S THEOREM. Analytic subvarieties of a Kdhler manifold are
minimal.

Thus we can apply (2.0), conclude that lodnI" = 0 and obtain (1.0) in the
Kahler case by using (1.1).

Proof of (2.0). 'We restrict ourselves to the case when W is the Euclidean
space and V 1is nonsingular. Denote by A, the (n — 1)-dimensional volume
of the boundary V N 0B..

Minimality of V implies

@2.1) V. > Vol Co, = A, ,
n

where Co. is the cone over A, centered at vy.
On the other hand

(2.2) Ve 2/ A, dr.
0
Regularity of V implies that

Ve . A
(2.3) lim — = lim

e—0 € e—0 ne”—1

:Cna

- where C,, is the volume of the unit ball in R”.

Combining (2.1), (2.2) and (2.3), we get
(2.4) Ve > Cué",
which implies (2.0) in the Euclidean case.

Proof of (1.0). As we mentioned above, (2.4) implies (1.0), but only in
the Euclidean case where (2.4) is proven. But the local nature of the density
enables us to reduce the general case to the Euclidean one: near each point
x € X we equip the complex manifold X (we suppose that X is compact
without boundary) with a flat (i.e. Euclidean) Kahler structure and use the
product structure near each point from X*. Independence of “lodn” upon the
choice of the metric allows one to apply (2.4) to derive the vanishing of
“lodn” and thus the desired inequality 2 < lov .
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§3. KAHLER MANIFOLDS

We view a Kahler manifold as a Riemannian manifold W with a closed
2 form w. Every submanifold V of dimension n = 2m satisfies the Wirtinger
inequality

(3.0) wmwz/@w,
\%

and equality

(3.1) VOI(V):/(w)m
1%

holds if and only if V is complex analytic (of complex dimension m). Observe
that (3.0) and (3.1) imply the Federer theorem.

Start now with a Kihler manifold X of real dimension n = 2m and apply
(3.1) to the iterated graph (Ip)r C X% of an endomorphism f: X — X. We
get

k m
(32) S Vol @ = ()" 1),

where o € H*(X,R) is the cohomology class represented by the structural

k
2-form, (},) = S (F)i(@), and [X] is the fundamental class of X.
When X = CP™ and deg f =d = p™ we have

k k+1
_p 1
(Za> _ p— 1 o
and conclude that
(3.3) lov I'y =logdeg f.

Together with (1.0) this implies our main inequality (0.1).

REMARKS. (3.3) holds whenever « is an eigenvector of the operator
f*: H*(X,R) — H*(X,R) but not generally, as shown by linear endomorphisms
of tori.

When X is complex but not Kahler, neither “lov” nor entropy can be
estimated in homological terms. Moreover, the entropy of a holomorphic

vector field can be non-zero. (In the Kahler case, maps homotopic to the
identity have “lov’ =0.)
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Take a complex semi-simple Lie group and factor it by a discrete uniform
subgroup. The group translations in this factor can have non-zero entropy.
To be specific, we take SI,(C) acting by isometries in three-dimensional
hyperbolic space. Thus geodesic flows on compact 3-dimensional hyperbolic
manifolds are factors of translations of the above type and their entropy must
be positive.

HOPF MANIFOLDS

The Hopf manifold H™ is diffeomorphic to S!' x $?"~!. As a complex
manifold it is the factor of C™\ O by the following action of Z :

X — 20X, xeC"\0,z20€C, |20 #0,1, reZ.

There is a natural fibration H" — CP™~! and each endomorphism of CP"~!
extends to HA™. When m > 1 Hopf manifolds are not Kahler; nevertheless,
for any endomorphism f: H™ — H™ we have

(3.4) h(f) = lov f = logdeg f .

Proof. Each endomorphism f preserves the fibers of the fibration
H™ — CP™ ! and “lov” is additive in the following sense.

Given a holomorphic fibration H — V with fibers 7,,, v € V, equiped with
Kihler structures. Suppose that structural cohomology classes o, € H*(T,;R)
are parallel under the holonomy action of m (V). If f: H — H 1is a fiber-
preserving endomorphism, one can define

k

k

(3Ca) =D (F)(aw,) € HX Ty R),
i=1

vo € V, and an endomorphism g: V — V induced by f.

THE ADDITION FORMULA
1 ko\m
lov f =lov g + kl_1>n(;1o i log<(za) ,[Tvo]> ,
where m = dim¢ T, , and [T,,] 1s the fundamental class of T, .

This formula is almost as obvious as (3.2) and, together with (3.3), it
yields (3.4).
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GENERALIZATIONS AND PROBLEMS

In the previous discussion, we avoided mentioning the fact of the scarcity
of complex endomorphisms. I am not able to add any interesting examples to
those considered above'). Generic manifolds have no endomorphisms. Every
surjective endomorphism f is finite-to-one and when deg f = 1 it is injective.
More generally, if V and V' are complex (not necessarily compact or Kahler)
manifolds of equal dimensions and their even Betti numbers are finite and
equal (i.e. by = b);) then every proper surjective holomorphic map f: V — V/
is finite-to-one and when deg f = 1 the map is injective. The finitness
condition cannot be omitted; take C?, blow it up at all points from a lattice.
The endomorphism of the resulting manifold induced by the transformation
C> — C*, x — %, has infinitely many blow-downs.

The lack of endomorphisms can be offset by abundance of general
holomorphic graphs. The most regular asymptotic behavior is displayed by
graphs I' C X x X of finite type when both projections I" — X are finite-to-
one. In the finite type case the infinitely iterated graph I'., can be viewed
as a 2m-dimensional (m = dim¢cI'" = dim¢c X) compact set ‘foliated’” by
complex m-dimensional leaves and having Cantor sets as transversal sections.
The holomorphic finite type graphs probably have finite “lov” and entropy
and at least in the Kahler case this can be proved as follows: Denote by
vy H'(X X X;R), n =2m, m = dim¢c I" = dim¢ X, the class dual to [['] and
by 741 € HY(X*;R) the class induced from v by projecting X* onto the
product of its i-th and (i + 1)-th factors. Denote by 5 € H*(X*;R) the class
represented by the structural 2-form. One can easily see that

k—1
Vol T = (8" [T v, [X41) 5
i=1

thus “lov” is finite.

In the end, I must admit my inability to prove (or disprove) the inequality
(V) > lov I" even when T' is a graph of an endomorphism. (Of course, I
mean here only the holomorphic case. For smooth endomorphisms, the situation
h(f) = 0, lovf > 0 occurs already for maps S' — S!' and, probably, for
higher dimensions the opposite: A(f) > 0, lovf = 0 can also happen.)
The inequality A(I') > lov I" reminds one of the Shub entropy conjecture
[5] proposing a lower estimate for the entropy in homological terms. In the

complex-analytic context, one has more homology theories to provide further
speculations.

") There are some in the Appendix.
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§4. REAL ALGEBRAIC MAPS

We are going to show that the entropy of a real algebraic map of “algebraic
degree p” cannot exceed n logp, where n is the dimension. One way of
approach is to complexify the whole situation, i.e. to take the Zariski closure
of the graph of the map, and to apply reasoning from the previous section.
This enables us to solve both problems: to introduce the notion of degree and
to prove the inequality & < n logp.

In order to avoid passing to complex numbers and to make the proof
applicable to piecewise algebraic (say, piecewise linear) maps we shall now
present a different argument based on Bézout’s theorem.

Let us start for the sake of simplicity with ‘a map f given by two
polynomials in R® of degree p. Suppose that f sends a square S C R®
into itself and try to estimate the entropy of f: S — §. Divide § into pieces
S; of size < e by straight lines [;, i =1,2,...,r; see Figure I.

L

S1 AY)

)

FIGURE 1

Try now to cover the iterated graph (Ir)r by products of these pieces.
Observe that a product Sj, X S;, X --- x S;, C S intersects (I'y); if and only
if the intersection S, Nf~1(S;,) N --- N~ =1(S;) is not empty. Now let us
estimate the number N; of all such non-empty intersections. This number is
not greater than the number of components in

s\ J £

1<p<k
1<i<r
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and thus N cannot exceed 4 times the number of all pairwise intersections
of all lines f~#(l;), provided the map f: S — S was injective. The system
of lines {/;} can be represented as the zero-set of a polynomial of degree r
and thus the system {f~*(l;)} given by a polynomial of degree k-r-p*; by
Bézout’s theorem the number of intersections is not greater than Kr’p*. So
Ny < 4k*r*p* and limy_,o0 ¢ log Ny < 2logp.

In the general case (when n > 2, or n =2 and f is not injective), there
appears a complication pointed out by J. Milnor (and communicated to me
by Newhouse): the components in the complement S\ | Jf~#(/;) can contain
no points of intersections of lines (or surfaces when n > 2). A typical ‘bad’
picture for n = 3 is shown in Figure 2.

FIGURE 2

But in any case, each component must contain in its boundary a component
of an algebraic variety determined by certain intersections of f~#(l): to
estimate the number of those, Milnor suggested using his (and Thom’s) theorem
(see [3]):

The number of all components of the zero-set of a system of polynomials
of degree D in R" is not greater than (2D)".

(The actual Milnor inequality is more precise and also takes into account the
Betti numbers in positive dimensions.)

It seems more natural to apply the Milnor theorem not in the space X
itself, but in the product X*, in particular when we deal with an algebraic
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graph. Unforiunaiely. the direct application leads to the weaker estimate
h < n log(2p). due 10 the coefficient 2 in the Milnor theorem. But in our
rather special stivaiion, this 2 can easily be removed and we always have
h<nlogp.

PERIODIC POINTS

The argument above is the same as in the Artin-Mazur theorem on periodic
poinis [1]: the number of isolated periodic points of a map of degree p cannot
exceed (np)k, where k is the period. The number n is the dimension of the
Euchdean (or projective) space in which the manifold X is realized, and p is
the degree of polynomials defining the graph I' C X x X C R*" of the map.
The points of period k correspond o the intersection of Iy C R*" with the
preimage of the diagonal in X x X by the projection of X* to the product
of 1ts first and last factors. Artin and Mazur make use of Bézout’s theorem,
which immediately yields the needed estimate. Notice that the Milnor-Thom
mequality 1mplies an analogous estimate for all Betti numbers of the sets of
perodic points.

Artin and Mazur combine their estimaie with the Nash theorem on
approximaiion of a smooth map by algebraic ones (i.e. with algebraic graphs)
and conclude : For a dense set of smooth maps, the number of isolated points
k is not greater than (const)*. Omitiing “isolated’ seems not completely trivial
(though geomeirically obvious) in the pure algebraic situation. (One even
expects a “generic algebraic” map to have no invariant algebraic manifolds of
positive dimension. unlike the smooth case where invariant manifolds can be
persisient. )

The following argument. communicated to me by Newhouse, allows one
to get 1id of the ‘isolated’.

A map X — X. X C R”, can be extended to a neighbourhood of X
by a map F strongly expanding in directions normal to X. The invariant
manifold X of this extension is stable under small perturbation of F and
thus the general situation is reduced io the simple case of polynomial maps
m R".

GEOMETRIC APPROACH

The last remark undermines the role of algebraic maps in differential
dvnamics (but. of course. algebraic dynamics is in many respects more
interesting than differential anyway) and we can go even further replacing
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degree by a kind of geometric complexity (in spirit of Thom) of a smooth
map, making use of a quantitative form of the Thom transversality theorem
instead of Bézout’s theorem. The quantitative transversality can be used
also for counting periodic orbits of a vector field and periodic points of
a transformation preserving an additional structure (volume. symplectic form,
etc.) and it yields the Artin-Mazur estimate for dense sets of such maps.
Unfortunately, the detailed proof (at least the one I know of) is more
lengthy than the algebraic one, and I shall treat the subject somewhere
else.

REMARK. The quantitative transversality theory has been developed by
Y. Yomdin (see p. 124 in [5] for a brief introduction) but does not suffice, as
it stands, for the diff-version of the Artin-Mazur theorem. In fact., one needs
here an adequate notion of genericity (compare remark on p.31 in [5]) as is
shown in [1’] for smooth maps. I have never returned to this issue and can
only conjecture the extension (and sharpening) of the corresponding results in
[1'] to structure preserving maps and/or vector fields.

§5. QUASICONFORMAL MAPS

For a smooth map f: X — Y from one oriented n-dimensional Riemannian
manifold into another, we denote by D.f its differential at x, by |D.f|
the norm of the differential, by detD,f its Jacobian, and by A\ the ratio
ID«f|"/ det Dy f called the conformal dilation at x € X. A map is called
A-quasiconformal if, for almost all x, the differential D,f exists, detD,f
does not vanish, and Af < A. A quasiconformal map must have locally
positive degree. If n = 1, each locally diffeomorphic map is conformal (i.e.
1-quasiconformal).

When n = 2, conformal maps are complex analytic and for n > 2

~

all conformal maps are locally diffeomorphic. In particular, when n > 2,
every non-injective conformal endomorphism is conjugate to a homothety of
a flat Riemannian manifold. When A > 1, there are (not locally injective)
A-quasiconformal maps in all dimensions 7 > 1. They are locally homeo-
morphic outside a codimension 2 branching set. At that set, they are never

(n > 2) smooth.
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GENERALISATION OF (0.1)

If f is a A-quasiconformal endomorphism of a closed 7n-dimensional
manifold, then

(5.0 h(f) <logdeg f + n log \.
(Compare with the standard estimate A(f) < sup,cy7 log||Dif||.)

Proof. As before, we estimate the density and volume of the iterated
graph and we need an analogue of (2.0) only for the Euclidean space. The
only new ingredient here is the following obvious fact:

Consider an n-dimensional V C (R")* with all projections V — R”
\-quasiconformal and having volumes not greater than g > 0. (The volume
of a map is the integral of its Jacobian.) Then

(5.1) Vol V < K" 1.

Combining (5.1) with the isoperimetric inequality applied to the projection
V — R" realizing p we conclude that

(5.2) Vol V < CK' 1 AT | C=Ch),

where A denotes the (n — 1)-dimensional volume of the boundary 0V. (In
other words, graphs of quasiconformal maps are quasiminimal.)
Now, using the same notation as in Section 2, we conclude that

n

(5.3) V. < CEMI AL

and combining (5.3) with (2.2) and (2.3), we have:
(5.4) V. > const, K"y N1,

Combining (5.4) and (1.1) and observing that projections of the iterated graph
(I')x of a A-quasiconformal f are X¢-quasiconformal we obtain :

h(f) <lovIy+(n—1)logA.
To complete the proof, we apply (5.1) again and get

lov Iy <logdeg f+1logA.
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§6. MEAN CURVATURE

Let X be a closed n-dimensional manifold with a Riemannian metric g.
Suppose that iterated graphs Iy C X* are smooth of dimension 7. Denote by
Cu(y), v € Ik, the absolute value of the mean curvature of I} at -y. Set

1
lome, I" = lim sup — log ( 1+ [Cu(fy)]”d’y) .
k—co k T
When I, are minimal and lome, = 0 we know that i < “lov”.
More generally,

(6.0) h(y) <lov I' +lome,I'.

Proof. Despite the possible dependence of “lome” upon the choice of g,
we can proceed as before and reduce (6.0) to the following local estimate :

Take V in the Euclidean space R~ and suppose its boundary does not
intersect the ball B,. centered at vy € V. Then

(6.1) e " Vol V + / Cu"(v)dv > C <,
\%

where C; and C, are constants depending only on #n.

To prove (6.1) we consider the normal bundle N of V and its canonical
map F into R’. The Jacobian J of F at a point v 4 vt (where v € V, and
v is the unit vector at v normal to V) is equal to H?:l(l + k;t), where k;
are the principal curvatures in the direction v .

If the distance from v+vt to V isequal to ¢, then 1+kt > 0,i=1,...,hA,
and so

(6.2) J <A1+ Cu"(v)) .

Now we observe that every point of the ball B, can be joined by a shortest
normal with V and so

Coe" = Vol B, < A,Co_pe®™" / (1 + €"Cu*(v)) dv,
v
where C, and C,_, are volumes of unit balls in R¢ and Rf~". The last
inequality implies (6.1) and so (6.0) is proved.

The inequality (6.2) was extended by Karcher and Heinze to general
Riemannian manifolds. Discussions with Karcher about such inequalities
influenced my reasoning in this section.
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APPENDIX: EXAMPLES OF HOLOMORPHIC ENDOMORPHISMS

The following examples appeared after the discussion I had with Spencer
Bloch and David Mumford.

(1) TWISTED HOPF MANIFOLDS

Divide C"\ O by the action of a linear operator A without eigenvalues
in the unit disk. All endomorphisms of the quotient (n > 1) come from
polynomial maps f: C" — (C". For such an endomorphism, its entropy and
“lov” are probably equal to “logdeg”.

EXAMPLE. A: (z1,22) — (AMz1, A222) and f: (z1,22) —> (z’l’ ,z’z’).

(2) GENERALIZED HOPF MANIFOLDS

Let fo: Xo — Xp be an endomorphism. Take a line bundle L over X, such
that f5(L) = Q"L (=L®---®L, p times). Locating such an L is usually
quite easy by looking at Pic(Xp). Denote by Y the total space of L. There is
a fiberwise map ]7: Y — Y lifting f; and acting on fibers as z+—— 2. If we
divide Y by a fiberwise action of Z (it is z — 70z, zo # 0, in each fiber)
we get f: Y/Z — Y/L.

There is another way to compactify Y by taking the total space of
the one-dimensional projective bundle associated to L. The endomorphism
f canonically extends to this compactification.

(3) THE CALABI-ECKMANN MANIFOLDS

Let us take (C* x C*)\ ((C*x 0)U (0 x C%)) and divide by the following
action of C: .
(z1,22) — (Ai\ZnAé\ZQ) , AeC.

A; and A, are appropriate linear operators in C* and C?. For example,
A} = exp)\, A3 = expi\, where ) is a scalar. In the last case, the factor
manifold possesses an endomorphism f which lifts to the following polynomial
map

Chx Cl = CFx ¢t @15 e e s Zigt) — (&5 20 g) -

Recall that the Calabi-Eckmann manifolds are diffeomorphic to S%*~1 x §2¢-1.
The above map f has degree d = (2(k+ £ — 1) and h(f) = lov f = logd.
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(4) BLOWING UP

Let us take W C Vy and an endomorphism f: Vo — Vo such that
f~Y(W) = W. The endomorphism f can be sometimes lifted to the manifold
V obtained by blowing up W.

EXAMPLE. V, = CP!xCP!, W is the single point (0,0), and f: (z1,22) +
(], 7).

(5) CONCLUDING REMARKS

A typical compact complex manifold has very few endomorphisms. For
example, manifolds with nontrivial Kobayashi volume have no endomorphisms
of degree > 2. Do Grassmann manifolds have such endomorphisms? (No,
see [3'1.)
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NOTE DES EDITEURS

L’article qui précede a été rédigé en 1976 et a circulé sous la forme d’une
prépublication de SUNY, des 1977. Nous I’avons imprimé ici en I’état, a
I’exception de la derniere remarque du §4, de ’adjonction de trois références
et de la correction d’un petit nombre de fautes de frappe. Serge Cantat, que
nous remercions, a bien voulu rédiger a cette occasion un court texte pour
orienter le lecteur vers quelques-uns des nombreux travaux influencés par
I’article de Mikhail Gromov.

NOTES SUR IARTICLE DE M. GROMOV

par Serge CANTAT

0.1. L’article de M. Gromov a considérablement influencé les travaux sur
la conjecture de Shub (reliant entropie topologique et action sur 1’homologie)
ainsi que 1’étude des systemes dynamiques holomorphes, notamment en ce
qui concerne la dynamique a plusieurs variables.

Le texte [14] propose une preuve alternative des résultats principaux obtenus
par M. Gromov. Ceux de Shmuel Friedland ([6], [7] et [8]) proposent diverses
extensions de ces résultats au cadre des transformations méromorphes des
variétés kahlériennes (voir [5]).

Les deux pages qui suivent ne concernent que la dynamique holomorphe.
Il convient toutefois de noter les articles suivants, qui sont li€és a d’autres
aspects de ’article de Gromov et contiennent de nombreuses références: [15]
et plus généralement 1’ensemble des travaux de S. Newhouse sur le sujet, ainsi
que [1], qui s’inscrit dans la lignée des travaux d’Artin et Mazur, de Gromov
et de Yomdin.

0.2. Bien souvent, on couple les résultats obtenus par M. Gromov a ceux
de Y. Yomdin (voir [10], [19]) et de S. Newhouse (voir [15]). Le théoréme
suivant est un exemple typique.
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