
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 49 (2003)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ON THE ENTROPY OF HOLOMORPHIC MAPS

Autor: GROMOV, Mikhaïl

DOI: https://doi.org/10.5169/seals-66687

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-66687
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


L'Enseignement Mathématique, t. 49 (2003), p. 217—235

ON THE ENTROPY OF HOLOMORPHIC MAPS

by Mikhaïl Gromov

Our purpose is to calculate the topological entropy of a holomorphic map

/ of the complex projective space CP into itself. Every such map is given

by (m + 1) homogeneous polynomials in Cm+1 each of the same degree p,
and the topological degree deg/ is equal to p71. When m — 1, the space

CPm is the Riemann sphere S2 and such maps are given by rational functions

of one variable. Geometrically, they are conformai maps S2 -A S2 of positive

degree.

The topological entropy h(f defined in the next section, measures the

asymptotic complexity of the iterates fk, and it is usually hard to calculate.

Main RESULT. If f: CPm -4 CPm is holomorphic, then

(0.0) h(f) log(deg /).

Remarks and acknowledgements. We prove here only the inequality

(0.1) h(J) < log(deg /).
The opposite statement h(f) > log(deg /) was established by Misiurewicz
and Przytycki [4] for all smooth maps. They proved even more: if / is a

C2 -smooth endomorphism of a compact manifold and points having at least d
preimages are dense then h(f) > log(deg /). For example, every smooth map
of zero degree of a closed manifold onto itself has entropy not less than log 2.

Our paper owes very much to Sheldon Newhouse. Inequality (0.1) is a

response to his very first question to me on arriving at IHES. He conjectured
(0.1) in the case m — 1, suggested a possibility of analogous estimates for
real polynomial maps and provided an example for a class of maps R2 —y R2

given by polynomials of degree 2. His further interest in the problem forced
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me to write this paper. I also appreciate the hospitality of IHES, which made

possible my involvement in this story. I am especially thankful to Dennis
Sullivan, who took pains to read the paper and to clean it up of multiple
errors.

Structure of the paper. We start with a geometric outlook on topological

entropy and reduce our inequality (0.1) to standard facts about minimal
varieties. We discuss next the real algebraic analogue of (0.1) and a generalization

to maps. We conclude with an estimate of the entropy involving the

mean curvature.

§ 1. Notation and definitions

For a space X we denote by Xk the product X xXx xX (k factors).
A graph F over X is by definition an arbitrary set F C X2. When X is finite
this is the usual definition of an oriented graph (with loops). The graph of a

map X X gives another example.
For a graph F we denote by Fk C Xk the set of strings (x\,... ,Xk),

xi G X, where each pair (x;_i,;q) G X2 is contained in F.
When X is endowed with a metric, we call e-cubes products in Xk of

balls from X of radius e. For a set Y C Xk we denote by Cape Y the minimal
number of e-cubes needed to cover Y.

Entropy

Set he(F) limsup^^ | logCape r*, and h(F) — lim^o WO, for

r c x2.
When / is an endomorphism X -A X, we define its entropy h(f) as the

entropy of its graph Ff. If the space X is compact, the definition does not
depend on the choice of the metric [2]. Observe that the entropy of a general

graph r is equal to the entropy of the shift in C X°° : is the space
of doubly infinite strings Orç)i=...^1,0,1,... with the product topology, and the

shift maps (jq) to (jq+i). For finite X, we come to the usual definition of the

Markov shift.

Volume

From now on, X is a Riemannian manifold and n — dimT, r c x2.
We denote by Vol r* the «-dimensional volume of F/; c Xk, i.e. the
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n -dimensional Hausdorff measure with respect to the Riemann product metric

in Xk. Set
i

lov T lim sup - log Vol Tk
>-oo k

For an / we set lov / lov Tf. This is a smooth invariant of f (it does not

depend on the choice of the Riemann metric).

Our invariant "lov" is sometimes more accessible than entropy and for a

holomorphic / we are going to prove that

(1.0) h(f) < low f.

Density

Denote by Dense(rfc,7), for 7 E Fk C Xk, the rc-dimensional measure

of the intersection of Tk with the ball (in the Riemannian product metric)

of radius e centered at 7. Set Dense(I~T) inf^GrA. Dense(r^, 7), and then

lodner liminf^oo £ logDense r\, and finally

lodn T lim lodne T.
e—>-0

Observe that Vol > Cap2e Dense and hence that

(1.1) h(V) < lov T — lodnT.

§2. Estimates of density

Consider a Riemannian manifold W (it will be Xk in the sequel) and an

n -dimensional subvariety V C W. We suppose that the boundary of V (if
there is such) does not intersect the ball Be C W of radius e > 0 centered

at a point vq £ V. We suppose also that the injectivity radius of W at vq

is at least e, i.e. the exponential map TVo(W) -> W is injective in the e-ball
in TVo(W).

Density of a minimal variety

If the sectional curvature in Be is not greater than K and V is minimal,
then

(2.0) Vol(VnRe) > C>0,
where the constant C depends on n, K, and e, but does not depend on dim W.
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The proof is given below. This fact is well known and C is equal to the

volume of the e-ball in the n -dimensional space of constant curvature K.
Our application of (2.0) to complex geometry is based on

FEDERER'S THEOREM. Analytic subvarieties of a Kühler manifold are
minimal.

Thus we can apply (2.0), conclude that lodnT 0 and obtain (1.0) in the
Kahler case by using (1.1).

Proof of (2.0). We restrict ourselves to the case when W is the Euclidean

space and V is nonsingular. Denote by Ae the (n — 1)-dimensional volume
of the boundary V D dBe.

Minimality of V implies

(2.1) Ve>Vol Coe -Ae
n

where Coe is the cone over Ae centered at vq.
On the other hand

fJo
(2.2) Ve> I Ar dr

Regularity of V implies that

(2.3) lim — lim -A- Cn,
e->o e" e-»-o ne"~l

where Cn is the volume of the unit ball in Rn.

Combining (2.1), (2.2) and (2.3), we get

(2.4) Fe>Cnen,

which implies (2.0) in the Euclidean case.

Proof of (1.0). As we mentioned above, (2.4) implies (1.0), but only in
the Euclidean case where (2.4) is proven. But the local nature of the density
enables us to reduce the general case to the Euclidean one: near each point
x G X we equip the complex manifold X (we suppose that X is compact
without boundary) with a flat (i.e. Euclidean) Kühler structure and use the

product structure near each point from Xk. Independence of "lodn" upon the

choice of the metric allows one to apply (2.4) to derive the vanishing of
"lodn" and thus the desired inequality h < lov
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§ 3. Kahler manifolds

We view a Kahler manifold as a Riemannian manifold W with a closed

2-form u>.Everysubmanifold V of dimension n 2m satisfies the Wirtinger

inequality

(3.0) Vol(V) > [ (u;)m,
Jv

and equality

(3.1) Vol(V) [ (u)m
Jv

holds if and only if V is complex analytic (of complex dimension m). Observe

that (3.0) and (3.1) imply the Federer theorem.

Start now with a Kähler manifold X of real dimension n 2m and apply

(3.1) to the iterated graph (Tf)k C Xk of an endomorphism f:X X. We

get

(3.2) Vol (I»*

where a G H2(X, R) is the cohomology class represented by the structural
k

i
2-form, (JZa) S/=i(/*)'(a)' anc^ 1^] is the fundamental class of X.

When X CPm and deg/ d pm we have

k nk+1 _ 1

E.)-VrB
and conclude that

(3.3) lov rf log deg/.

Together with (1.0) this implies our main inequality (0.1).

Remarks. (3.3) holds whenever a is an eigenvector of the operator
-A //2(X, R) but not generally, as shown by linear endomorphisms

of tori.

When X is complex but not Kähler, neither "lov" nor entropy can be

estimated in homological terms. Moreover, the entropy of a holomorphic
vector field can be non-zero. (In the Kähler case, maps homotopic to the

identity have "lov" 0.)
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Take a complex semi-simple Lie group and factor it by a discrete uniform
subgroup. The group translations in this factor can have non-zero entropy.
To be specific, we take SL2(C) acting by isometries in three-dimensional

hyperbolic space. Thus geodesic flows on compact 3-dimensional hyperbolic
manifolds are factors of translations of the above type and their entropy must
be positive.

Hopf manifolds

The Hopf manifold PT is diffeomorphic to S1 x S2'n~l. As a complex
manifold it is the factor of Cm \ 0 by the following action of Z :

xecm\0, zoeC, \zo\ /0,l, rez.
There is a natural fibration Hn -» CPm~l and each endomorphism of Cpm~1

extends to Hm. When m > 1 Hopf manifolds are not Kähler; nevertheless,

for any endomorphism / : ET -a Hm we have

(3.4) h(f) lov / log deg /.
Proof. Each endomorphism / preserves the fibers of the fibration

Hm —» CPm~l and "lov" is additive in the following sense.

Given a holomorphic fibration H -A- V with fibers Tv, v G V, equiped with
Kähler structures. Suppose that structural cohomology classes av G H2(TV; R)
are parallel under the holonomy action of 7Ti(V). If is a fiber-

preserving endomorphism, one can define

* A(£*) ^ E Cry'K,) e R),
/= 1

vo e V, and an endomorphism g: V -A V induced by /.

The addition formula

lov/ lov g+ fclhn
1 log<^(£a)m, [r„0]^

where m dimcTVo, and [TVo] is the fundamental class of TVo.

This formula is almost as obvious as (3.2) and, together with (3.3), it
yields (3.4).
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Generalizations and problems

In the previous discussion, we avoided mentioning the fact of the scarcity

of complex endomorphisms. I am not able to add any interesting examples to

those considered above1). Generic manifolds have no endomorphisms. Every

surjective endomorphism / is finite-to-one and when deg / =1 it is injective.
More generally, if V and V' are complex (not necessarily compact or Kähler)

manifolds of equal dimensions and their even Betti numbers are finite and

equal (i.e. b2l b'2i) then every proper surjective holomorphic map /: V -7 V
is finite-to-one and when deg / 1 the map is injective. The finitness

condition cannot be omitted; take C2, blow it up at all points from a lattice.

The endomorphism of the resulting manifold induced by the transformation
C2 -A C2, x I—> I, has infinitely many blow-downs.

The lack of endomorphisms can be offset by abundance of general

holomorphic graphs. The most regular asymptotic behavior is displayed by
graphs F C X x X of finite type when both projections F -A- X are finite-to-
one. In the finite type case the infinitely iterated graph F^o can be viewed
as a 2m-dimensional (m dime T dimcX) compact set 'foliated' by
complex m-dimensional leaves and having Cantor sets as transversal sections.

The holomorphic finite type graphs probably have finite "lov" and entropy
and at least in the Kähler case this can be proved as follows : Denote by
7 G Hn(X xZ;R), n 2m, m — dimcT dimc^C the class dual to [T] and

by 7y+i G Hn(Xk; R) the class induced from 7 by projecting Xk onto the

product of its i-th and (/+ 1) -th factors. Denote by ß G H2(Xk; R) the class

represented by the structural 2-form. One can easily see that

thus "lov" is finite.
In the end, I must admit my inability to prove (or disprove) the inequality

h(V) > lov T even when T is a graph of an endomorphism. (Of course, I
mean here only the holomorphic case. For smooth endomorphisms, the situation
h(J) 0, lov/ > 0 occurs already for maps S1 -G S1 and, probably, for
higher dimensions the opposite: h(f) > 0, lov/ 0 can also happen.)
The inequality h(T) > lov T reminds one of the Shub entropy conjecture

I [5] proposing a lower estimate for the entropy in homological terms. In the
I complex-analytic context, one has more homology theories to provide further
I speculations.

k-1

1

There are some in the Appendix.
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§4. Real algebraic maps

We are going to show that the entropy of a real algebraic map of "algebraic
degree p" cannot exceed n log/?, where n is the dimension. One way of
approach is to complexify the whole situation, i.e. to take the Zariski closure

of the graph of the map, and to apply reasoning from the previous section.

This enables us to solve both problems : to introduce the notion of degree and

to prove the inequality h < n logp.
In order to avoid passing to complex numbers and to make the proof

applicable to piecewise algebraic (say, piecewise linear) maps we shall now

present a different argument based on Bézout's theorem.

Let us start for the sake of simplicity with a map / given by two

polynomials in R2 of degree p. Suppose that / sends a square S C R2

into itself and try to estimate the entropy of /: S —> S. Divide S into pieces

Sj of size < e by straight lines k, i — 1,2,..., r ; see Figure 1.

Si Si

h

h

Figure 1

Try now to cover the iterated graph (I/)& by products of these pieces.

Observe that a product x Sh x • • • x Sjk C Sk intersects (1/)^ if and only

if the intersection Sjl nf~l(Sj2) (1 * • • is not empty. Now let us

estimate the number Nk of all such non-empty intersections. This number is

not greater than the number of components in

S\ U
l<ß<k
\<i<r
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and thus Nk cannot exceed 4 times the number of all pairwise intersections

of all lines provided the map /: S -» S was injective. The system
of lines {/;} can be represented as the zero-set of a polynomial of degree r
and thus the system {f~ß(k)} given by a polynomial of degree k - r •// ; by
Bézout's theorem the number of intersections is not greater than J<?r2p2k. So

Nk < 4k2r2p2k and lim^oo | logA^ < 2 logp.
In the general case (when n > 2, or n — 2 and / is not injective), there

appears a complication pointed out by J. Milnor (and communicated to me
by Newhouse): the components in the complement S\{Jf~ß(li) can contain

no points of intersections of lines (or surfaces when n > 2). A typical 'bad'
picture for n — 3 is shown in Figure 2.

Figure 2

But in any case, each component must contain in its boundary a component
of an algebraic variety determined by certain intersections of ; to
estimate the number of those, Milnor suggested using his (and Thorn's) theorem

I (see [3]):

j The number of all components of the zero-set of a system of polynomials
J of degree D in R" is not greater than (2D)n.

(The actual Milnor inequality is more precise and also takes into account the
j Betti numbers in positive dimensions.)
j It seems more natural to apply the Milnor theorem not in the space X

itself, but in the product Xk, in particular when we deal with an algebraic
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graph. Unfortunately, the direct application leads to the weaker estimate
h < n log(2/?). due to the coefficient 2 in the Milnor theorem. But in our
rather special situation, this 2 can easily be removed and we always have

h <n log/?.

Periodic points

The argument above is the same as in the Artin-Mazur theorem on periodic
points [1] : the number of isolated periodic points of a map of degree p cannot
exceed (ripf. where k is the period. The number n is the dimension of the

Euclidean (or projective) space in which the manifold X is realized, and p is

the degree of polynomials defining the graph T Clxlc R2n of the map.
The points of period k correspond to the intersection of Yk c R47* with the

preimage of the diagonal in X x X by the projection of Xk to the product
of its first and last factors. Artin and Mazur make use of Bézout's theorem,
which immediately yields the needed estimate. Notice that the Milnor-Thom
inequality implies an analogous estimate for all Betti numbers of the sets of
periodic points.

Artin and Mazur combine their estimate with the Nash theorem on

approximation of a smooth map by algebraic ones (i.e. with algebraic graphs)
and conclude : For a dense set of smooth maps, the number of isolated points
k is not greater than (const)4. Omitting isolated' seems not completely trivial
(though geometrically obvious) in the pure algebraic situation. (One even

expects a "generic algebraic* map to have no invariant algebraic manifolds of
positive dimension, unlike the smooth case where invariant manifolds can be

persistent.)

The following argument, communicated to me by Newhouse, allows one

to get rid of the isolated'.

A map X —> A. X c R". can be extended to a neighbourhood of X
by a map F strongly expanding in directions normal to X. The invariant
manifold X of this extension is stable under small perturbation of F and

thus the general situation is reduced to the simple case of polynomial maps
in Rn.

Geometric approach

The last remark undermines the role of algebraic maps in differential

dynamics (but, of course, algebraic dynamics is in many respects more

interesting than differential anyway) and we can go even further replacing
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degree by a kind of geometric complexity (in spirit of Thorn) of a smooth

map, making use of a quantitative form of the Thorn transversality theorem

instead of Bézout's theorem. The quantitative transversality can be used

also for counting periodic orbits of a vector field and periodic points of
a transformation preserving an additional structure (volume, symplectic form,
etc.) and it yields the Artin-Mazur estimate for dense sets of such maps.

Unfortunately, the detailed proof (at least the one I know of) is more

lengthy than the algebraic one, and I shall treat the subject somewhere

else.

Remark. The quantitative transversality theory has been developed by
Y. Yomdin (see p. 124 in [57] for a brief introduction) but does not suffice, as

it stands, for the diff-version of the Artin-Mazur theorem. In fact, one needs

here an adequate notion of genericity (compare remark on p. 31 in [57]) as is
shown in [!'] for smooth maps. I have never returned to this issue and can

only conjecture the extension (and sharpening) of the corresponding results in
[F] to structure preserving maps and/or vector fields.

§ 5. Quasiconformal maps

For a smooth map /: X —» Y from one oriented n -dimensional Riemannian
manifold into another, we denote by Dxf its differential at x, by ||Z>T/||
the norm of the differential, by detDr/ its Jacobian, and by Xf the ratio
IIA-/H7detA7 called the conformai dilation at x G X. A map is called
A-quasiconformal if, for almost all x, the differential Dxf exists, det Dxf
does not vanish, and Aj < A. A quasiconformal map must have locally
positive degree. If n — 1, each locally diffeomorphic map is conformai (i.e.
1 -quasiconformal).

When n 2, conformai maps are complex analytic and for n > 2
all conformai maps are locally diffeomorphic. In particular, when n > 2.
every non-injective conformai endomorphism is conjugate to a homothety of
a flat Riemannian manifold. When A > 1, there are (not locally injective)
A-quasiconformal maps in all dimensions n > J They are locally homeo-
morphic outside a codimension 2 branching set. At that set. they are never
(n > 2) smooth.
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Generalisation of (0.1)

If / is a À -quasiconformal endomorphism of a closed -dimensional

manifold, then

(5.0) h(f) < log deg / + n log A.

(Compare with the standard estimate h(f) < supxeXn log IIA/II •)

Proof. As before, we estimate the density and volume of the iterated

graph and we need an analogue of (2.0) only for the Euclidean space. The

only new ingredient here is the following obvious fact:
Consider an n -dimensional V C (Rn)k with all projections V -A Rn

À-quasiconformal and having volumes not greater than ß > 0. (The volume

of a map is the integral of its Jacobian.) Then

(5.1) Vol V< k"+lXfi.

Combining (5.1) with the isoperimetric inequality applied to the projection
V^Rn realizing ß we conclude that

(5.2) Vol V < œ+l\, C C(n),

where A denotes the (n — 1)-dimensional volume of the boundary dV. (In
other words, graphs of quasiconformal maps are quasiminimal.)

Now, using the same notation as in Section 2, we conclude that

(5.3) ve < cr+1XAp

and combining (5.3) with (2.2) and (2.3), we have:

(5.4) Ve > constniTcoristant^enA1_n

Combining (5.4) and (1.1) and observing that projections of the iterated graph

(Tf)k of a A-quasiconformal / are Xk -quasiconformal we obtain:

Kf) < l°v Tf + {n— 1) log A

To complete the proof, we apply (5.1) again and get

lov I) < log deg / + log A
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§6. Mean curvature

Let I be a closed rc-dimensional manifold with a Riemannian metric g.
Suppose that iterated graphs Tk C Xk are smooth of dimension n. Denote by

Cu(7), 7 G ri, the absolute value of the mean curvature of Tk at 7. Set

I lomeQ T lim sup \ log 1 + f [Cu(j)]nd^y)
i 00 k V Jn J

j When Yk are minimal and lome^ 0 we know that h < "lov".
j More generally,

j (6.0) h(7) < lov T + lomep T.

j Proof Despite the possible dependence of "lome" upon the choice of g,
we can proceed as before and reduce (6.0) to the following local estimate :

Take V in the Euclidean space Ri==kn and suppose its boundary does not
intersect the ball #2e centered at vo G V. Then

(6.1) e'n Vol y + [ Cun(v)dv > Cxf2,
I Jv

where C\ and C2 are constants depending only on n.
j To prove (6.1) we consider the normal bundle N of V and its canonical

map F into R^. The Jacobian J of F at a point v + vt (where v G V, and
j v is the unit vector at v normal to V) is equal to YYi=iO + kLt), where kt

are the principal curvatures in the direction v.
] If the distance from v+vt to V is equal to t, then 1+kjt >0, i 1,..., h,
I and so

(6.2) J <An(\ +tnCu!\v))

; Now we observe that every point of the ball Be can be joined by a shortest
j normal with V and so

Qee Vol B<AnCe-nee-n(l + dv,

j where Q and Q_n are volumes of unit balls in Re and R£~n. The last
I inequality implies (6.1) and so (6.0) is proved.

The inequality (6.2) was extended by Karcher and Heinze to general
Riemannian manifolds. Discussions with Karcher about such inequalities
influenced my reasoning in this section.
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Appendix : Examples of holomorphic endomorphisms

The following examples appeared after the discussion I had with Spencer
Bloch and David Mumford.

(1) Twisted Hopf manifolds

Divide Cn \ 0 by the action of a linear operator A without eigenvalues
in the unit disk. All endomorphisms of the quotient (n > 1) come from
polynomial maps f:Cn-^Cn. For such an endomorphism, its entropy and

"lov" are probably equal to "logdeg".

Example. A: (zi,z2)>—» (Aiz1; A2z2) and /:1—» (fvz%)-

(2) Generalized Hopf manifolds

Let fo : Xo -A Xo be an endomorphism. Take a line bundle L over Xo such

that /q(L) L (:= L® • • • ® L, p times). Locating such an L is usually
quite easy by looking at Pic(Xo). Denote by Y the total space of L. There is

a fiberwise map / : Y -> Y lifting fo and acting on fibers as z 1—> zp. If we
divide F by a fiberwise action of Z (it is z 1—y zoz, Zo 7^ 0, in each fiber)
we get/: Y/Z^Y/Z.

There is another way to compactify F by taking the total space of
the one-dimensional projective bundle associated to L. The endomorphism

/ canonically extends to this compactification.

(3) The Calabi-Eckmann manifolds

Let us take (Ck x C£) \ ((Ck x 0) U (0 x C^)) and divide by the following
action of C :

(zi, Z2) ^ y (AiZ\,A2Z2) 5
À EC.

A\ and A2 are appropriate linear operators in Ck and C£. For example,

A\ expÀ, A2 exp/A, where A is a scalar. In the last case, the factor

manifold possesses an endomorphism / which lifts to the following polynomial

map

C'xCLc'xC« : (zu---,zw)^(Z1,...,zpk+e).
Recall that the Calabi-Eckmann manifolds are diffeomorphic to S2^-1 x S2£_1.

The above map / has degree d (2(k + I — 1 )f and h(f) lov / log d.
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(4) Blowing up

Let us take W C V0 and an endomorphism f:Vo V0 such that

W. The endomorphism / can be sometimes lifted to the manifold

V obtained by blowing up W.

Example. V0 CP1 x CP1, W is the single point (0,0), and / : (z\, zi) ^
(z\,zp2).

(5) Concluding remarks

A typical compact complex manifold has very few endomorphisms. For

example, manifolds with nontrivial Kobayashi volume have no endomorphisms

of degree > 2. Do Grassmann manifolds have such endomorphisms? (No,

see [3'].)
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Note des Éditeurs

L'article qui précède a été rédigé en 1976 et a circulé sous la forme d'une
prépublication de SUNY, dès 1977. Nous l'avons imprimé ici en l'état, à

l'exception de la dernière remarque du §4, de l'adjonction de trois références

et de la correction d'un petit nombre de fautes de frappe. Serge Cantat, que
nous remercions, a bien voulu rédiger à cette occasion un court texte pour
orienter le lecteur vers quelques-uns des nombreux travaux influencés par
l'article de Mikhaïl Gromov.

NOTES SUR L'ARTICLE DE M. GROMOV

par Serge CANTAT

0.1. L'article de M. Gromov a considérablement influencé les travaux sur
la conjecture de Shub (reliant entropie topologique et action sur l'homologie)
ainsi que l'étude des systèmes dynamiques holomorphes, notamment en ce

qui concerne la dynamique à plusieurs variables.

Le texte [14] propose une preuve alternative des résultats principaux obtenus

par M. Gromov. Ceux de Shmuel Friedland ([6], [7] et [8]) proposent diverses

extensions de ces résultats au cadre des transformations méromorphes des

variétés kâhlériennes (voir [5]).
Les deux pages qui suivent ne concernent que la dynamique holomorphe.

Il convient toutefois de noter les articles suivants, qui sont liés à d'autres

aspects de l'article de Gromov et contiennent de nombreuses références: [15]
et plus généralement l'ensemble des travaux de S. Newhouse sur le sujet, ainsi

que [1], qui s'inscrit dans la lignée des travaux d'Artin et Mazur, de Gromov
et de Yomdin.

0.2. Bien souvent, on couple les résultats obtenus par M. Gromov à ceux
de Y. Yomdin (voir [10], [19]) et de S. Newhouse (voir [15]). Le théorème

suivant est un exemple typique.
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