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Remark 1.1. The above computations fail, and the space is no longer

Gromov-hyperbolic, if one replaces dy X^do by dy P(\y\)do, where P(.
is a polynomial function of y. Indeed, in this case, the length of the horizontal
interval between the two considered orbits, evaluated at the height where the

minimum of the length-function /(/) is attained, depends, even in the optimal
case, on the horizontal length of the interval connecting one point to the orbit

I of the other. Whereas in the exponential case it equals unless it belongs
1 to the horizontal axis.

2. Mapping-telescopes and forest-stacks

Let A be a topological space. Call X a topological tree if there exists a

unique arc between any two points in X. A topological forest is a union of
disjoint topological trees. By 'arc' we mean the image of an injective path.
A path in A is a continuous map from a bounded interval of the real line
into X. A forest-map is a continuous map of a topological forest into itself.

Definition 2.1. Let ip: X —> X be a forest-map. The mapping-telescope
K.0 of (ip,X) is the topological space resulting from Kx \J X x [n,n+ I]

«EZ
by the identification of each point (jc, n + 1) G A x [n, n + 1] with the point
(tp(x),n+ 1) G A x [n + \,n + 2].

Let us examine somewhat more closely the topology of these mapping-
telescopes.

For any integer ne Z, for any (jc, r) G A x [n,n + 1], for any real
number t > 0, we define d>((x, r)) as the point (^[r-(w+1_r)]+1(jc), r + t) in
A x [E[r + t],E[r + t] + 1], where E[r] denotes the integer part of r. The
map at is defined on Kx (the disjoint union of the A x [n,n + 1]) for every
t > 0. Moreover ät+t> ät o ay.

If a (x, n + 1) G A x [n + 1, n + 2], then dt{a) n + 1 + t) G

[ne- 1 + E[t],E[t] + n + 2]. Whereas if a (jc, n + 1) G A x [n, n + 1] then
&t(a) (^M+1(r), n+1 +0 G A x [n-\r 1 -\-E[t], E[t\ + n + 2], which is equal to
crfb) with b 00(a),n+1) G Ax[n+l,rc+2]. Therefore (at)teR+ descends to
the mapping-telescope K^, where it defines a one parameter family (cr?)?GR+
of continuous maps of K^. This family depends continuously on the parameter
te R+. It satisfies furthermore ^j0 Id^ and at+t, atoaf Such a family
is called a semi-flow on K^.
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Let f:K$ -» R be defined by f(a) r if a G X x {r}. Then / is a

continuous surjective map. The preimage of any real number r is X x {r},
a topological forest. Furthermore, for any t > 0, f o at rt of, where

7>: R —R is defined by rt(r) r + t.
We extracted above the two properties shared by mapping-telescopes which

are really important for our work. We now define a class of spaces which satisfy
these two properties, and in particular generalize the mapping-telescopes.

Definition 2.2. Let X be a topological space. Let (0>)fGR+ be a semi-flow
on X. Let /: X -» R be a surjective continuous map such that:

1. For any real number r, the stratum is a topological forest.

2. For any t > 0, foat rt of, where rt{r) r + t for any real number r.
Then I is a forest-stack, denoted by (X,/, o>).

Remark 2.3. All the strata of a mapping-telescope are homeomorphic.
This is not required in the definition of a forest-stack.

As we just saw, a mapping-telescope is an example of a forest-stack. In
Section 13, we show that a Cayley complex for the mapping-torus group of
an injective free group endomorphism is a mapping-telescope of a forest-map,
and thus a forest-stack. The reader can also find there, and in Section 12, an

illustration of the horizontal and vertical metrics on forest-stacks, which we
are now going to define.

3. Metrics

The aim of this section is to introduce a particular metric on forest-stacks,
called the telescopic metric. We sometimes deal with metric spaces which are

not necessarily connected, for instance forests. In this case, when considering
the distance between two points, it will always be tacitly assumed that the

two points lie in a same connected component of the space.

3.1 Horizontal and vertical metrics

Let us consider a forest-stack (X,/, at), see Definition 2.2. We want to
define a natural metric on the orbits of the semi-flow.
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