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48 P. ETINGOF AND E. STRICKLAND

In general, m is not a homomorphism. However :

PROPOSITION 2.4. Let Aw C A denote the subalgebra of elements

invariant under conjugation by W. Then the restriction of m to Aw is

an algebra homomorphism.

Proof If A G Aw, then clearly m(A) is IP-invariant. Now if we
take A,B e Aw and / a IP-invariant function we have that B(f) is also

IP-invariant. So

m(AB)(f) (AB)(f) A(B(f)) A(m(B)(f)) m(A)(m(B)(f)).

Thus m(AB) and m(A)m(B) coincide on IP-invariant functions and hence

coincide.

2.5 Dunkl operators and symmetric quantum integrals
In this subsection we will construct quantum integrals of the Calogero-

Moser operator. This construction is due to Heckman [He] and is based on
the Dunkl operators, introduced in [Du].

Fix a IP-invariant function c: 2 -» C such that ßs cs(cs + 1) for each

s G X. Set öc := ELex and define

L ôc(x)HSc(x).
Then an easy computation shows that

where, for a vector y G I), the symbol dy denotes, as usual, the partial
derivative in the y direction (notice that using the scalar product we are

viewing as as a vector in f) orthogonal to the hyperplane fixed by 5").

From now on we will work with L instead of H and study the eigenvalue

problem

(4) Lf \f.
It is clear that f is a solution of this equation if and only if 8c(x)~lrf is a

solution of (3).

Since for any s G S and / G C[f)] we have that f{sx) — fix) is divisible

by oy(x), the operator

-F-(S _ 1) g
asW

maps C[tj] to itself.
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Definition 2.5. Given yG f), we define the Dunkl operator on C[f)]

We have the following very important theorem.

Theorem 2.6 ([Du]). Let y,z 6 f). T/ien

[Dy,DJ 0.

Froo/ See [Du], [Op].

Proposition 2.7 (Heckman [He]). ^ an orthonormal

basis of Then we have

n

m(J2D2y)=L.
i= 1

Proof Observe that m(YTi=\ Dy) ELi so we need to compute

m(Dy) for y G f). We have m(Dy) m(Dym(Dy)) m{Dydy). A simple

computation shows that

r-t ^ o2 / i\ 2(aSfy)
Dydy=dy+Y: ~l)- (^)da>S)

sez

Thus

We get

m(D2y) c>y2 - 2 c,
(a"y)2

da,
Tee fe>a«)w)

1=1 i sEE

since £)"=1(<W;)2 (cns,as).

We are now ready to give the construction of quantum integrals of L.
Consider the symmetric algebra Sf) C[yi,...,yn] which we can identify,
using the fact that the Dunkl operators commute, with the polynomial
ring C[Dyi,..., DyJ C A. The restriction of m to Sf)w is an algebra
homomorphism into the ring V(U) (and in fact into V(U/W)). Since Sl)w is

itself a polynomial ring C[q\,..., qn], with qi,...,qn of degree d\,.. dn,
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di being the degrees of basic W-invariants, we obtain a polynomial ring of
commuting differential operators in V(U). Given q G C[gi,... ,qn] we will
denote by Lq the corresponding differential operator. We may assume that

qi y\ so ^at L Lqi. Thus for every q G C[<?i,... Lq is a

quantum integral of the quantum Calogero-Moser system. In particular, the

operators Lqn Lqn are n algebraically independent pairwise commuting
quantum integrals.

Now the eigenvalue problem (4) may be replaced by

Lpij) Xpîp

for p G C[gi,..., qn], where the assignment p -> Xp is an algebra

homomorphism C[qi,..., qn] —> C.
In other words, we may say that since C[q\,... ,qn] C[l)*/W] —

C[f)/W], for every point A: G fy/W, we have the eigenvalue problem

(5) Lptp p(k)f>

PROPOSITION 2.8. Near a generic point xo G f), system Lpip p{k)ijj
has a space of solutions of dimension \W\.

Proof The proposition follows easily from the fact that the symbols of
Lq. are qfd), and that C[yi,...,yn] is a free module over C[gi,... ,g„] of
rank |W|.

2.6 Additional integrals for integer valued c

If cs £ Z, the analysis of the solutions of the equations Lpf) p{k)f is

rather difficult (see [HO]). However, in the case c: £ -A Z, the system can be

simplified. Let us consider this case. First remark that, since ßs — cs-(q+ 1), by
changing cs to — 1 — cs if necessary, we may assume that c is non-negative.
So we will assume that c takes non-negative integral values and we will
denote it by m.

System (5) can be further simplified, if we can find a differential

operator M (not a polynomial of Lqi,..., Lqn such that [M, Lp\ 0 for
all p G C[q\ Then the operator M will act on the space of solutions

of (5), hopefully with distinct eigenvalues. So if p is such an eigenvalue, the

system

Lpipiß

Miß — ß iß
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