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48 P. ETINGOF AND E. STRICKLAND
In general, m is not a homomorphism. However :

PROPOSITION 2.4. Let AY C A denote the subalgebra of elements
invariant under conjugation by W. Then the restriction of m to AV is
an algebra homomorphism.

Proof. If A € AV, then clearly m(A) is W-invariant. Now if we
take A,B € A" and f a W-invariant function we have that B(f) is also
W -invariant. So |

m(AB)(f) = (AB)(f) = AB(f)) = A(m(B)(f)) = m(A)(m(B)(f)) -

Thus m(AB) and m(A)m(B) coincide on W-invariant functions and hence
coincide. [

2.5 DUNKL OPERATORS AND SYMMETRIC QUANTUM INTEGRALS

In this subsection we will construct quantum integrals of the Calogero-
Moser operator. This construction is due to Heckman [He] and is based on
the Dunkl operators, introduced in [Dul].

Fix a W-invariant function c: £ — C such that 8y = c4(¢cy + 1) for each
s € X. Set d¢ := [[;cy as(x)* and define

L=68.(x)Hb(x)" 1.
Then an easy computation shows that
ZCS
L=A- O 4

2o
where, for a vector y € §j, the symbol 0y denotes, as usual, the partial
derivative in the y direction (notice that using the scalar product we are
viewing «y as a vector in f orthogonal to the hyperplane fixed by s).

From now on we will work with L instead of H and study the eigenvalue
problem

4) Lip = .

It is clear that 1) is a solution of this equation if and only if J.(x)"!%) is a
solution of (3).

Since for any s € X and f € C[h] we have that f(sx) — f(x) is divisible
by a,(x), the operator

1
as(x)(s_ He A

maps C[h] to itself.
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DEFINITION 2.5. Given y € b, we define the Dunkl operator Dy on C[h]
by

D=0+ Y e s -,
sEX s

We have the following very important theorem.

THEOREM 2.6 ([Du]). Let y,z € h. Then
[DyaDz] =0.

Proof. See [Du], [Op]. [

PROPOSITION 2.7 (Heckman [Hel). Let {yi,...,yn} be an orthonormal
basis of Y. Then we have

m(i D;)=L
i=1

Proof. Observe that m(3> ), D2) =7, m(D3), so we need to compute
m(D}) for y € h. We have m(D}) = m(Dym(D,)) = m(Dy0y). A simple
computation shows that

85 2 S
D3, =%+ 3 2D - 22280, 0.
SEZ S S S

Thus

2
mD?) = 0 23 ¢ 22Y)

(s, ag)ars(x)

We get

(0, 05 0g(X)

n n 2
1\ O, Y
OBIED SLAE) BRI N
i=1 i seX
since Z?zl(asyyi)z - (aﬁ CVS)' D

We are now ready to give the construction of quantum integrals of L.
Consider the symmetric algebra S = C[yy,...,y,] which we can identify,
using the fact that the Dunkl operators commute, with the polynomial
ring C[D,,,...,D,] C A. The restriction of m to Sh" is an algebra
homomorphism into the ring D(U) (and in fact into D(U/W)). Since Sh" is
itself a polynomial ring Clgqi,...,q,], with q1,...,q, of degree di,...,d,,
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d; being the degrees of basic W-invariants, we obtain a polynomial ring of
commuting differential operators in D(U). Given g € Clqy, ..., q,] we will
denote by L, the corresponding differential operator. We may assume that
g1 = > ., ¥7 so that L = L, . Thus for every q € Clgi,...,qal, L, is a
quantum integral of the quantum Calogero-Moser system. In particular, the
operators L, ,...,L, are n algebraically independent pairwise commuting
quantum integrals.

Now the eigenvalue problem (4) may be replaced by
L,y = At

for p € Clgi,...,9,], where the assignment p — X, is an algebra
homomorphism Cig,...,q,] — C.

In other words, we may say that since Clgi,...,q,] = C[h*/W] =
C[h/W], for every point k € h/W, we have the eigenvalue problem

S) Ly = p(k)p .

PROPOSITION 2.8. Near a generic point xo € by, the system Ly = p(k)y
has a space of solutions of dimension |W|.

Proof. The proposition follows easily from the fact that the symbols of
L, are g;(0), and that Cly,...,y,] is a free module over Clg,...,g,] of
rank |[W|. [

2.6 ADDITIONAL INTEGRALS FOR INTEGER VALUED c

If ¢, ¢ Z, the analysis of the solutions of the equations L,y = p(k)i) is
rather difficult (see [HO]). However, in the case c: ¥ — Z, the system can be
simplified. Let us consider this case. First remark that, since §; = ¢(c;+1), by
changing c; to —1 — ¢, if necessary, we may assume that ¢ is non-negative.
So we will assume that ¢ takes non-negative integral values and we will
denote it by m.

System (5) can be further simplified, if we can find a differential
operator M (not a polynomial of L, ,...,L, ) such that [M,L,] = 0 for
all p € Clq,...,q,]. Then the operator M will act on the space of solutions
of (5), hopefully with distinct eigenvalues. So if p is such an eigenvalue, the
system

{Lp¢=p<k>¢
My = pi
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