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310 E. MEINRENKEN

cohomology class in H'(M,U(1)) = H*(M,Z) defined by this cocycle is
the Chern class of the line bundle. Chatterjee-Hitchin [10, 18, 17] suggested
to realize classes in H>(M,Z) in a similar fashion, replacing U(1)-valued
functions with Hermitian line bundles. They define a gerbe to be a collection
of Hermitian transition line bundles L, — U, N U, and a trivialization, 1.e.
unit length section, #,,. of the line bundle (0L)y. = LbcLa_clLab over triple
intersections. These trivializations have to satisfy a compatibility relation over
quadruple intersections,

C -1 —1
(5Z)abcd = tbcdtacdtabdtabc =1 )

which makes sense since (0f)ucq 18 a section of the canonically trivial
bundle. (Each factor L, cancels with a factor La_b1 .) After passing to a
refinement of the cover, such that all L, become trivializable, and picking
trivializations, fu. is simply a Cech cocycle of degree 2, hence defines a class
in H*(M, u()) = H*(M,Z). The class is independent of the choices made in
this construction, and is called the Dixmier-Douady class of the gerbe.

Note that in practice, it is often not desirable to pass to a refinement.
For example, if M is a connected, oriented 3-manifold, the generator of
H3(M,Z) = Z can be described in terms of the cover U;, U,, where U; is
an open ball around a given point p € M, and U, = M\{p}, using the degree
one line bundle over U; N U, =2 5% x (0, 1).

2.2 BUNDLE GERBES

Bundle gerbes were invented by Murray [24], generalizing the following
construction of line bundles. Let m: X — M be a fiber bundle, or more
generally a surjective submersion. (Different components of X may have
different dimensions.) For each k > 0 let X*! denote the k-fold fiber product
of X with itself. There are k + 1 projections & : X1 — XK = omitting
the ith factor in the fiber product. Suppose we are given a smooth function
y: X1 — U(1), satisfying a cocycle condition §x = 1 where

Ox = OpxOix 105 x: XP — U®).

Then y determines a Hermitian line bundle L — M, with fibers at m € M the
space of all linear maps ¢: X,, = 7~ '(m) — C such that ¢(x) = x(x,x)px).
Given local sections o,: U, — X of X, the pull-backs of x under the maps
(04,0p): U, N U, — X2 give transition functions Y, for the line bundle.
Again, replacing U(1)-valued functions by line bundles in this construction,
one obtains a model for gerbes: A bundle gerbe is given by a line bundle
L — X™ and a trivializing section ¢ of the line bundle 6L = §L®;L™'®@05L
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over XB), satisfying a compatibility condition d¢ = 1 over X*! (which
makes sense since dt¢ is a section of the canonically trivial bundle dJL).
Given local sections o,: U, — X, one can pull these data back under the
maps (04,03): U, N U, — X2 and (04,0p,0.): U, NU, N U, — XB 1o
obtain a Chatterjee-Hitchin gerbe. The Dixmier-Douady class of (X,L,1) is
by definition the Dixmier-Douady class of this Chatterjee-Hitchin gerbe; again
this is independent of all choices. The Dixmier-Douady class behaves naturally
under tensor product, pull-back and duals.

Notice that Chatterjee-Hitchin gerbes may be viewed as a special case of
bundle gerbes, with X the disjoint union of the sets U, in the given cover.

REMARK 2.1. In his original paper [24] Murray considered bundle gerbes
only for fiber bundles, but this was found too restrictive. In [25], [29] the
weaker condition (called ‘locally split’) is used that every point x € M admits
an open neighborhood U and a map o: U — X such that 7 oo = id.
However, this condition seems insufficient in the smooth category, as the fiber
product X X3, X need not be a manifold unless 7 is a submersion.

2.3 SIMPLICIAL GERBES

Murray’s construction fits naturally into a wider context of simplicial
gerbes. We refer to Mostow-Perchik’s notes of lectures by R. Bott [23] and
to Dupont’s paper [12] for a nice introduction to simplicial manifolds, and to
Stevenson [29] for their appearance in the gerbe context.

Recall that a simplicial manifold M. is a sequence of manifolds (M,)5°,,
together with face maps 0;: M, - M,_, for i =0, ..., n satisfying relations
0;00; = 0;_100; for i < j. (The standard definition also involves degeneracy
maps but these need not concern us here.) The (fat) geometric realization
of M. is the topological space ||M|| = [[ -, A" x M,/ ~, where A" is
the n-simplex and the relation is (¢, 8;(x)) ~ (0(¢),x), for &' : A" — A"
the inclusion as the ith face. A (smooth) simplicial map between simplicial
manifolds M,, M, is a collection of smooth maps f,: M, — M), intertwining

the face maps; such a map induces a map between the geometric realizations.

EXAMPLES 2.2.

(a) If § is any manifold, one can define a simplicial manifold E,S where
E,S is the n+ 1-fold cartesian product of S, and 0; omits the jth factor. It
is known [23] that the geometric realization ||ES|| of this simplicial manifold
1s contractible. More generally, if X — M is a fiber bundle with fiber S,
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