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22 G. CAPITANIO

suffisamment régulières, convergentes vers H et uo respectivement. Pour

chaque ne N on construit la solution de minimax un du problème de Cauchy
de hamiltonien Hn et donnée initiale (mqjW) ; il suit que la limite limn_^+00 un

est la solution de minimax du problème de Cauchy de hamiltonien H et
donnée initiale uq.

3. Caractérisation géométrique de la solution de minimax

3.1 Notations j

Soit 7°R {(#, z)} — R2 l'espace des jets d'ordre 0 sur R, 7To : /°R -A R j

la projection naturelle (q,z) q. Un front d'onde dans 7°R est la projection |

dans J°R d'une courbe legendrienne de JlR {(q,z,p)} — R3 par
7Ti : (q,z>p) i->- (q,z). Pour un front générique, les seules singularités possibles j

sont des cusps et des auto-intersections transverses.

Soit F un front de J°R. On appelle section de F toute partie connexe j

maximale a qui est le graphe d'une fonction x<r : tto(<j) -A R de classe C1 j

par morceaux. Une branche de F est une section de classe C1. j

Un front est long si, en dehors d'un compact de R, il est le graphe
d'une fonction, plat si sa tangente n'est jamais verticale. On peut dans ce

cas coorienter le front en fixant en tout point le vecteur orthonormal dont la

coordonnée en z est positive. Si le front est ainsi orienté, on peut distinguer
deux types de cusp: montant, si en suivant le front, on passe d'une branche j

à l'autre en la direction de la normale fixée, descendent si on passe en la

direction opposée.

Deux courbes legendriennes de J1 R sont isotopes (par une isotopie
legendrienne) s'il existe un chemin de l'une à l'autre dans l'espace des courbes

legendriennes plongées de ^R. Pour la famille correspondante de fronts les

perestroikas qui interviennent génériquement sont montrés à la Figure 6;

il s'agit des projections des mouvements de Reidemeister pour les nœuds

relèvement des fronts dans l'espace de contact (voir par exemple [Ar3]) : queue
d'aronde (Q), pyramide (P), porte-monnaie (.B) et auto-tangence sûres) (J~).

Les auto-tangences dangereuses9) sont interdites car elles correspondent
à un point d'auto-intersection de la courbe legendrienne dont le front est la

projection. Pour un front plat toutes les auto-tangences sont dangereuses.

8) Au point d'auto-tangence la coorientation des deux branches est opposée.

9) Au point d'auto-tangence la coorientation des deux branches est la même.
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Figure 6

Singularités permises dans l'isotopie entre deux fronts

Le nombre de cusps d'un front, comptés avec leur signe (positif pour les

cusps montants, négatif pour les cusps descendants), le nombre de Maslov,

est invariant par isotopies legendriennes.

3.2 Décompositions admissibles (d'après Chekanov et Pushkar)

Dans cette section on rappelle brièvement la construction d'un nouvel
invariant des nœuds legendriens, dû à Yu. Chekanov et P. Pushkar, qui permettra
d'établir une caractérisation géométrique de la solution de minimax.

La projection d'un nœud legendrien de JlR dans 7°R par tï\ est un front
fermé. Soit X un tel front, générique.

On appelle décomposition de X des courbes X\,,.., Xn fermées, ayant un
nombre fini d'auto-intersections, telles que pour i / j, Xi DXj contient un
nombre fini de points, et X\ U • • • U Xn X.

Un point double x G X; fl Xj de X est un point de saut si Xi et Xj ne sont

pas lisses en x, de Maslov si le nombre de cusps (comptés avec leur signe)
qui séparent le long du front les deux branches se coupant en x est 0.

Définition. Une décomposition (Xi,..., Xn) de X est admissible si :

(1) chaque X/ est homéomorphe au bord d'un disque: dXt Bt ;

(2) pour tout i G {1, q G R, l'ensemble

Bi(q) := {z £ R | (q,z) C Bt}

est connexe; en particulier si c'est un point, ce point est un cusp du front;
(3) si (qo,z) G Xi D Xj (i ^ j) est un point de saut alors pour q ^ q0,

assez proche q0, l'ensemble Bi(q)nBi(q) est soit Bt{q), soit Bj(q), soit vide;
(4) les points de sauts sont tous de Maslov.
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