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Définition. On appelle max-min de / le nombre

max mint/) := sup{À G R | fxA / 0} — min max(—/)

THÉORÈME 1.9. Z,£ minimax de f coïncide avec le max-min.

Démonstration. D'après le Théorème 1.8 on peut supposer / générique,
donc de Morse excellente. Alors on déduit de la Proposition 1.5 que / et —/

j ont le même point critique libre.

{ Le résultat suivant sera utile plus loin.

PROPOSITION 1.10. Soit f une fonction excellente, f un point critique
dégénéré de f, de valeur critique c :=/(£)• Supposons que pour tout e > 0

il existe deux déformations g, h de f telles que :

(i) g et h sont e-proches de f ;

(ii) g n'a aucune valeur critique dans ]c — e, c + e[;
(iii) h a deux valeurs critiques, C\ =/(£i) et c\ —fiff) dans ]c —e, c + e[,

telles que et £2 sont non dégénérés.

Alors £1 et £2 sont liés.

Démonstration. Le même argument que pour la preuve du Théorème 1.8

(où l'on considère Ec~e au lieu de E~°°) montre que

HXEc+*,Ec-*)~HXEch+^Ech+*).

Or, d'après le Théorème 1.2, on a Ht(Ech+e,Ech~e) — 0. Par conséquent
Ht(Ecg+,Ecg~e)0, c'est-à-dire Çi et £2 sont incidents. Il s'ensuit que et

£2 sont liés (Proposition 1.3).

2. La solution de minimax

2.1 Rappels de géométrie symplectique

Soit X une variété différentielle de dimension n, T*X {(x;y)} le fibré
cotangent3) de X, tt: T*X X la projection naturelle (x, y) i-r x. Le fibré
T*X, muni de la forme symplectique canonique A est une variété
symplectique de dimension 2 n.

3) Pas nécessairement trivial.
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On appelle isotopie hamiltonienne4) le flot au "temps" T d'un hamiltonien

h: [o,r] x rx^rx.
Deux sous-variétés du fibré cotangent sont isotopes s'il existe une isotopie
qui transforme l'une dans l'autre. Une sous-variété de T*X est lagrangienne
si sa dimension est égale à la dimension de la base X du fibré et si la
forme symplectique s'annule sur cette sous-variété. Une isotopie transforme
des sous-variétés lagrangiennes en sous-variétés lagrangiennes.

DÉFINITION. Une famille génératrice (globale) d'une sous-variété lagrangienne

L du fibré cotangent est une famille de fonctions {Sç : X -> R}^gr^
dépendant des paramètres (gR1, telle que :

• la fonction S: X x Kk —> R, définie par S(x; £) := Sç(x), est de classe C2 ;

• 0 est une valeur régulière de l'application (x;£) dçS(x;Ç), c'est-à-dire:

rk(ô|ç5, djxS)|{a£5=0}K.

• la famille engendre la sous-variété lagrangienne

L — {{x, dxS(x;à) | 3 «ê G R"" : 0 0}

Etant donnée une famille génératrice S: X x R^ -a R d'une sous-variété

lagrangienne, les opérations suivantes permettent de construire une nouvelle

famille génératrice T (de paramètres p de la même sous-variété :

(0) Addition d'une constante: si C G R, on pose 77 £ et T(x; rj)

S(x;0 +;(1) Stabilisation: si K' G N et Q est une forme quadratique non dégénérée

de R*', on pose t? (0 0) et T(x\ rj) 0 + ß(0) ;

(ii) Difféomorphisme : si (x;rj) i-> (x,£(x,rj)) est un difféomorphisme préser¬

vant les fibres du fibré trivial X x R^ -a X, on pose T(x; p) S(x; Ç(x, p)).

On remarque que l'opération de stabilisation augmente le nombre de paramètres
de la famille génératrice.

Définition. On dit que deux familles génératrices sont équivalentes si

l'on peut obtenir l'une à partir de l'autre à l'aide d'une suite d'opérations (o),

(i) et (ii).

4) Dans la suite on ne considérera que des isotopies hamiltoniennes.
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En fait, il se trouve que si deux familles sont équivalentes, on peut

obtenir l'une de l'autre par une stabilisation, suivie d'un difféomorphisme

et de l'addition d'une constante.

DÉFINITION. Une famille génératrice est quadratique à Vinfini (fgqi) s'il
j existe une forme quadratique non dégénérée Qoq telle que S{x\tf) <2oo(0>

j pour |£| assez grand.

; Les fgqi sont une classe très importante de fonctions génératrices pour
le résultat suivant d'existence (dû à Sikorav, voir [Sik]) et d'unicité (dû à

;

Viterbo, voir [Vil], [The]).

Théorème d'existence et d'unicité de Sikorav-Viterbo. Si X est

une variété fermée5), toute sous-variété lagrangienne de T*X isotope à la

section nulle {(x;0) \ x E X} admet une fgqi; de plus, toutes les fgqi d'une
telle sous-variété sont équivalentes.

Remarques.
(1) Le théorème reste vrai dans le cas des variétés non compactes si

l'isotopie est à support compact ou, ce qui revient au même, si la variété est

transversale à la base X en dehors d'un compact, c'est-à-dire si la projection
7r est une bijection entre L et X.

(2) Il existe une version de contact (pour les sous-variétés legendriennes
de JlX) du théorème d'existence de Sikorav, dû à Yu. Chekanov ([Chi]),
mais pas, à ma connaissance, pour le théorème d'unicité de Viterbo.

Définition. Soit XL := {(x,y) E L \ \XDn(x,y) < dim Y} l'ensemble
des points singuliers de L. La caustique de L est la projection 7r(Z^) sur X
de l'ensemble des points singuliers.

Génériquement, l'ensemble des points singuliers est l'union de la variété
régulière de codimension 1 des points singuliers simples (où le rang de Dir
est dim Y - 1) et d'une réunion finie de variétés de codimension au moins 3

(voir [Arl]).
On rappelle que L est exacte si la 1-forme de Liouville ydx, restreinte

à L, est exacte, c'est-à-dire s'il existe une fonction (: L 4 R telle que
ydx\L d(. Si c'est le cas, on peut associer à L une sous-variété legendrienne

5) C'est-à-dire compacte et sans bord.
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L de l'espace JlX {(x,z,j)} des jets d'ordre 1 sur X (muni de la forme
de contact standard dz — ydx), définie à une constante en z près:

L := {(q, C(q,p),p) I (<FP) e L}

DÉFINITION. On appelle front d'onde ou diagramme de Cerf dt L l'image
Fl de L par la projection (x,z,y) (-A (x,z) dans l'espace J°X {(x,z)} des

jets d'ordre 0 sur X.

Soit S(x;Ç) une fgqi de L.

Définition. L'ensemble de Maxwell Ml de L est l'ensemble des points

x e X tels que la fonction de Morse £ i-a S(x;Ç) n'est pas excellente.

Figure 4

Caustique et ensemble de Maxwell d'une courbe lagrangienne et du front associé

Remarques.
(1) D'après le théorème d'unicité de Viterbo, l'ensemble de Maxwell ne

dépend que de L.
(2) La projection naturelle FL -A X est une fibration en dehors de la

caustique et de l'ensemble de Maxwell (cf. Figure 4).
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(3) L'ensemble de Maxwell d'une sous-variété lagrangienne générique est

une hypersurface stratifiée (c'est-à-dire une réunion finie de variétés lisses, les

strates, connexes par arcs, deux à deux disjointes, telles que la fermeture de

chaque strate est la même strate et une réunion finie de strates de dimension

plus petite), voir [Ar2].
(4) La caustique et l'ensemble de Maxwell d'une sous-variété lagrangienne

générique ont mesure nulle.

2.2 La solution géométrique de (PC)

Considérons le problème de Cauchy pour l'équation de Hamilton-Jacobi

sur une variété Q (sans bord, mais pas forcément compacte) de hamiltonien

H : [0,+oo[xr*<2 -> R de classe C2 dans ]0, +oo[xT*<2 et continue au

bord, et donnée initiale uo : Q R de classe C1 :

f dtu(t, q) + H(t, q, dqu(t, q)) 0, V t > 0, q G Q

\u(0yq) u0(q), VqeQ.
Dans cette section on construit une sous-variété lagrangienne du fibré

cotangent de l'espace temps, la solution géométrique de (PC). Le théorème
de Sikorav-Viterbo permet de lui associer une "unique" fgqi S(t, q\ £). Cette
fonction est définie à une constante additive près; une fois cette constante
convenablement fixée, S est une solution, en générale multivoque, de (PC).
Son graphe6)

{(/, q, S(t, q; 0 | dçS(t,q; 0 0}

est le front d'onde de la solution géométrique.
Dans la prochaine section on utilisera la méthode de minimax pour choisir

en tout point (t, q) un unique point critique de £ t-A S(t, q; Q ; on obtiendra de

cette manière une section du front, qui s'avère être le graphe d'une fonction
bien définie, solution faible de (PC).

Sur le fibré cotangent T*Q {(q,p)}9 muni de la forme symplectique
canonique dpAdq, le champ hamiltonien XH (dpH,-dqH) induit le flot
(j)\ [0, +oo[xT*<2 r*g. Ses composantes <p*(q,p) (<q(t),p(t)), que l'on
appelle les caractéristiques de XH, sont les solutions des équations de Hamilton

imdpH{t,q(t),îm,

Jtp(t)- -dqH(t,q(t),p(t)),

telles que q(0) q et j?(0) p.

6) Plus précisément, le contour apparent du graphe de S, projection le long de l'axe des £
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Soit Ao := {(q,du0(q)) | q E Q} la sous-variété lagrangienne de T*Q
engendrée par la donnée initiale, et At := 0?(Ao) son évoluée au temps t.

Remarques.
(1) La sous-variété Ao est isotope à la section nulle de T*Q, l'isotopie

étant engendrée par l'hamiltonien — uq.

(2) Chaque At est isotope à la section nulle de T*Q ; en effet Af est

isotope à Ao par l'isotopie <j)~l, et les isotopies forment un groupe.
(3) Il s'ensuit que At est exacte et, d'après le théorème de Viterbo, admet

une unique fgqi St{q\ £).

Considérons maintenant la variété "espace-temps" Q :=Rxß, et son fibré

cotangent T* Q {(£, q; r,p)}, muni de la forme symplectique dp/\dq+dr/\dt.
Le hamiltonien autonome J-C(t,q;ryp) := t + H(t,q,p) engendre le flot
O: [0, +oo[xP*Q aTQ, de composantes

<E>s(r, q: T,p)(/ + s, q(t+ s); f(t + + s))

où cpp sont les caractéristiques de Xh telles que q(t) q et p(t) p, et

f(t) -H(t,q(t),p(t))
Pour tout t > 0, considérons l'application

h : -f T*Q, (q,p) f-A (t, q; -H(t,
Un calcul direct montre que la variété que l'on obtient par la réunion des

courbes caractéristiques du flot O, sortant de fo(Ao),

A := (J <&A'o(Ao)) Cfö,
^•>0

est lagrangienne. De même, pour tout T > 0 fixé, la sous-variété de L*Q

AT:= (J OSO'O(AO))

0 <s<T

est aussi lagrangienne.

Définition. On appelle A la solution géométrique de (PC), et Ar la

solution géométrique tronquée au temps P.

Remarque. Pour 5 fixé, O* translate A d'un temps s le long les

caractéristiques, c'est-à-dire:

<J>ä (if(Af)) 0>s o Or(/o(A0)) - <E>^(/o(A0)) 4+XAr+s)

(propriété de semi-groupe du flot).



CARACTÉRISATION GÉOMÉTRIQUE DU MINIMAX 19

THÉORÈME 2.1. Pour tout T > 0, la solution géométrique tronquée au

temps T est isotope à la section nulle {(t,q; 0,0) | —T < t < 0,q G Q}.

kt

Figure 5

L'isotopie entre la solution géométrique tronquée et la section nulle

Démonstration. Puisque pour des temps petits il existe une solution

classique de (PC), il est facile de se ramener, par une isotopie, au cas

où la solution géométrique A coïncide avec la section nulle pour tout temps
inférieur à un certain e > 0 assez petit. Alors pour tout t < e' < e, on a

H(t,q,p) 0. On peut considérer l'extension suivante de H, de classe C2 :

~ /Hit, q,p), pour tout t > 0, (q,p) G P*ß
H(t,q,p) := <

[0 pour tout t < 0, iq,p) G P*ß.

Le flot O engendré par Ji := r + H étend le flot O à R tout entier. La
sous-variété lagrangienne

Ä := U ^Oo(Ao))
seR

de T*Q coïncide avec A dans le demi-espace {t > 0} et avec la section nulle
dans {t < 0}. Par conséquent, pour tout T > 0 fixé, est une isotopie
entre AT et la section nulle (cf. Figure 5).

On peut ainsi appliquer le théorème de Sikorav-Viterbo aux solutions
géométriques tronquées de (PC).
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Corollaire. Pour tout T > 0 fixé, AT admet une unique fgqi S(t, q\ £)

(modulo les opérations d'équivalence (i) et (il)), telle que son graphe restreint
à t — 0 coïncide avec le graphe de la donnée initiale uq

Dans la suite, S sera toujours une telle fgqi.

Démonstration. Soit S(t,q\£) l'unique fgqi de Ar. Or, cette fonction est

une primitive de la forme de Liouville pdq de Ao :

dS(0, q\ Uq)) du0(q) dq

où 0(0 est le seul point critique de £ So(q\Q. Par conséquent il existe

une unique constante C telle que S := 5 + C vérifie S(0, #;£o(0) wo(0

pour tout q £ Q.

Remarque. On peut construire une famille génératrice globale de la

solution géométrique A comme suit. La fonctionnelle d'action f pdq — Hdt
est une famille génératrice formelle (l'espace de paramètre étant de dimension

infinie) de A. En utilisant une méthode de point fixe, proposée par Amann-

Conley-Zehnder, on obtient une vraie fonction génératrice, voir [Car].

2.3 La solution de minimax

Soient t > 0, q G Q et 5(f, q; <0 la fgqi de la solution géométrique tronquée
AT, pour T > t. La fonction £ i-A S(t,q;Ç) est quadratique à l'infini, donc on

peut lui associer le niveau critique de minimax, étudié au §1.3.

Définition (Chaperon). On appelle solution de minimax de (PC) la
fonction

u(t, g) := min max{£ S(t, q; £)}

Remarque. L'autre solution que l'on peut construire avec ce même

argument (cf. [Cha]), la solution de max-min est, pour le Théorème 1.9,

la même solution.

M. Chaperon ([Cha]), T. Joukovskaïa ([Jou]), C. Viterbo ([Vi2]) ont étudié

les propriétés de cette fonction; en particulier Joukovskaïa a classifié les

singularités génériques de u en dimension petite (dimQ < 2).
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THÉORÈME 2.2 (Chaperon). La solution de minimax est une solution

faible1) de (PC), lipschitzienne sur chaque intervalle compact [0, T], et

indépendante du choix de la fgqi.

Remarque. Pour le Théorème 1.8, on peut supposer, sans perte de

généralité, que la solution géométrique de (PC) soit générique. Dans ce

cas l'ensemble 7r(X)UMA est de mesure nulle.

Démonstration. Soit A générique. La continuité de la solution de minimax

u est une conséquence immédiate de la stabilité du minimax par petites

déformations. En effet, fixons un point Co,<?o) de l'espace-temps et un e > 0.

Pour tout (t:q) assez proche de (to,qo), la fonction £ 5(f, #;£) est

une perturbation de £ 5Co,#oî£) aussi petite que l'on veut. D'après le

Théorème 1.8, on déduit que \u(to,qo) — u(t, q)\ < e.

Les autres propriétés de la solution de minimax sont simples à démontrer;

on renvoie pour les détails aux travaux déjà cités.

Soit (r0, qo) ^ Ma, t0 > 0. Par le théorème de la fonction implicite il
existe un voisinage IX de (to, qo) dans ]0, Too[xQ où le point critique libre de

£ i-A 5(t, q\ £) est une fonction £(t, q) de classe C1, définie par d^S(t, q\ £) 0.
Alors pour tout (t, q) G IX on a u(t, q) S(t,q;f(t,q)), donc u est de classe

C1, et vérifie l'équation de Hamilton-Jacobi; en effet

dtu(t, q) dtS(t, q\ £(t, q)), dqu(t, q) dqS(t, q; £(t, q))

et par définition de fgqi on a dtS(t,q\f(t,q)) + H(t,q,dqS(t,q\f(t,q))) t= 0.

Donc, en dehors de l'ensemble de Maxwell de A, m est dérivable et vérifie

l'équation de Hamilton-Jacobi. La solution de minimax satisfait la donnée

initiale, parce que l'on a choisi la fgqi de la solution géométrique telle que
5(0, q; £o(#)) uo(q), où £o(q) est le seul point critique de £ ha 5(0, q\ £).

Pour tout 0 < T < Too, w|[o,r] e$t lipschitzienne: en effet H et uo sont

lipschitziens, donc en un temps fini les espaces tangents aux fronts d'onde ne
sont jamais verticaux.

On déduit enfin du théorème de Viterbo que u ne dépend pas du choix
de 5 parmi les fgqi de A telles que 5(0, q\ f(q)) uo(q).

Remarque. Viterbo a montré que les mêmes résultats restent vrais

pour hamiltoniens et données initiales seulement lipschitziens, voir [Vi2].
On approche H et u0 par des suites de fonctions {Hn}neN et {Mo,n}neN>

7) C'est-à-dire u est continue et presque partout dérivable, et en ces points vérifie l'équation
de Hamilton-Jacobi ; de plus u satisfait la donnée initiale.
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suffisamment régulières, convergentes vers H et uo respectivement. Pour

chaque ne N on construit la solution de minimax un du problème de Cauchy
de hamiltonien Hn et donnée initiale (mqjW) ; il suit que la limite limn_^+00 un

est la solution de minimax du problème de Cauchy de hamiltonien H et
donnée initiale uq.

3. Caractérisation géométrique de la solution de minimax

3.1 Notations j

Soit 7°R {(#, z)} — R2 l'espace des jets d'ordre 0 sur R, 7To : /°R -A R j

la projection naturelle (q,z) q. Un front d'onde dans 7°R est la projection |

dans J°R d'une courbe legendrienne de JlR {(q,z,p)} — R3 par
7Ti : (q,z>p) i->- (q,z). Pour un front générique, les seules singularités possibles j

sont des cusps et des auto-intersections transverses.

Soit F un front de J°R. On appelle section de F toute partie connexe j

maximale a qui est le graphe d'une fonction x<r : tto(<j) -A R de classe C1 j

par morceaux. Une branche de F est une section de classe C1. j

Un front est long si, en dehors d'un compact de R, il est le graphe
d'une fonction, plat si sa tangente n'est jamais verticale. On peut dans ce

cas coorienter le front en fixant en tout point le vecteur orthonormal dont la

coordonnée en z est positive. Si le front est ainsi orienté, on peut distinguer
deux types de cusp: montant, si en suivant le front, on passe d'une branche j

à l'autre en la direction de la normale fixée, descendent si on passe en la

direction opposée.

Deux courbes legendriennes de J1 R sont isotopes (par une isotopie
legendrienne) s'il existe un chemin de l'une à l'autre dans l'espace des courbes

legendriennes plongées de ^R. Pour la famille correspondante de fronts les

perestroikas qui interviennent génériquement sont montrés à la Figure 6;

il s'agit des projections des mouvements de Reidemeister pour les nœuds

relèvement des fronts dans l'espace de contact (voir par exemple [Ar3]) : queue
d'aronde (Q), pyramide (P), porte-monnaie (.B) et auto-tangence sûres) (J~).

Les auto-tangences dangereuses9) sont interdites car elles correspondent
à un point d'auto-intersection de la courbe legendrienne dont le front est la

projection. Pour un front plat toutes les auto-tangences sont dangereuses.

8) Au point d'auto-tangence la coorientation des deux branches est opposée.

9) Au point d'auto-tangence la coorientation des deux branches est la même.
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