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DEFINITION. On appelle max-min de f le nombre

max min(f) := sup{\ € R | A # 0} = — min max(—f).

THEOREME 1.9. Le minimax de f coincide avec le max-min.

Démonstration. D’aprés le Théoréme 1.8 .on peut supposer f générique,
donc de Morse excellente. Alors on déduit de la Proposition 1.5 que f et —f
ont le méme point critique libre. [

Le résultat suivant sera utile plus loin.

PROPOSITION 1.10. Soit f une fonction excellente, & un point critique
dégénéré de f, de valeur critique c := f(€). Supposons que pour tout € > 0
il existe deux déformations g,h de f telles que:

(1) g et h sont e-proches de f;
(1) g n’a aucune valeur critique dans |c — €,c + €[ ;

(iii) h a deux valeurs critiques, ¢, = f(&}) et ¢; = f(&) dans Jc —€,c + €],
telles que & et & sont non dégénérés.
Alors & et & sont liés.

Démonstration. Le méme argument que pour la preuve du Théoreme 1.8
(ou I'on considere E°™¢ au lieu de E~°°) montre que

H (ESYe ES™) ~ H(ESTS EST).

Or, d’aprés le Théoreme 1.2, on a fl*(Efl+€,Efl_6) = 0. Par conséquent
H *(Eg+6,E;_€) = 0, c’est-a-dire &; et & sont incidents. Il s’ensuit que &; et
& sont liés (Proposition 1.3). [

2. LA SOLUTION DE MINIMAX

2.1 RAPPELS DE GEOMETRIE SYMPLECTIQUE

Soit X une variété différentielle de dimension n, T*X = {(x;y)} 1le fibré
cotangent®) de X, 7: T*X — X la projection naturelle (x,y) — x. Le fibré

T*X, muni de la forme symplectique canonique dy A dx, est une variété
symplectique de dimension 2n.

3) Pas nécessairement trivial.
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On appelle isotopie hamiltonienne*) le flot au “temps” T d’un hamiltonien
h:[0,T] x T*X — T*X.

Deux sous-variétés du fibré cotangent sont isotopes s’il existe une isotopie
qui transforme 'une dans 1’autre. Une sous-variété de T7*X est lagrangienne
si sa dimension est égale a la dimension de la base X du fibré et si la
forme symplectique s’annule sur cette sous-variété. Une isotopie transforme
des sous-variétés lagrangiennes en sous-variétés lagrangiennes.

DEFINITION.  Une famille génératrice (globale) d’une sous-variété lagran-
gienne L du fibré cotangent est une famille de fonctions {S¢: X — R}ecpe,
dépendant des parametres ¢ € RX | telle que:

e la fonction S: X x RX — R, définie par S(x; &) := Se(x), est de classe C?;
o 0 est une valeur réguliere de I’application (x;&) — 0:S(x; ), c’est-a-dire:

rk(@,éS, aéz“xS) |{oes=0y = K-
e la famille engendre la sous-variété lagrangienne

L= {(x, 0, S(x; 5)) |36 e R DeS(x; &) = O} :

Etant donnée une famille génératrice S: X x RE — R d’une sous-variété
lagrangienne, les opérations suivantes permettent de construire une nouvelle
famille génératrice T (de parametres 1) de la méme sous-variété:

(o) Addition d’une constante: si C € R, on pose n = & et T(x;n) =

S8+ C;

(i) Stabilisation: si K' € N et Q est une forme quadratique non dégénérée

de RX', on pose 7= (£,€) et T(;7) = S(x;€) + 0(E);
(i1) Difféomorphisme: si (x;n) — (x,&(x,n)) est un difféomorphisme préser-

vant les fibres du fibré trivial X x RK — X, on pose T(x;n) = S(x; £(x,n)).
On remarque que 1’opération de stabilisation augmente le nombre de parameétres
de la famille génératrice.

DEFINITION. On dit que deux familles génératrices sont équivalentes si
I’on peut obtenir 1’une & partir de ’autre a ’aide d’une suite d’opérations (o),

(1) et (11).

4) Dans la suite on ne considérera que des isotopies hamiltoniennes.




RS

CARACTERISATION GEOMETRIQUE DU MINIMAX 15

En fait, il se trouve que si deux familles sont équivalentes, on peut
obtenir 1’une de l’autre par une stabilisation, suivie d’un difféomorphisme
et de 1’addition d’une constante.

DEFINITION.  Une famille génératrice est quadratique a Uinfini (fgqi) sil
existe une forme quadratique non dégénérée Q. telle que S(x;&) = Ouo(§),
pour |£| assez grand.

Les fgqi sont une classe trés importante de fonctions génératrices pour
le résultat suivant d’existence (dii a Sikorav, voir [Sik]) et d’unicité (dl a
Viterbo, voir [Vil], [The]).

THEOREME D’EXISTENCE ET D’UNICITE DE SIKORAV-VITERBO. Si X est
une variété fermée>), toute sous-variété lagrangienne de T*X isotope a la
x € X} admet une fgqi; de plus, toutes les fgqi d’une
telle sous-variété sont équivalentes.

section nulle {(x;0)

REMARQUES.

(1) Le théoreme reste vrai dans le cas des variétés non compactes si
I’isotopie est a support compact ou, ce qui revient au méme, si la variété est
transversale a la base X en dehors d’'un compact, c’est-a-dire si la projection
7 est une bijection entre L et X.

(2) II existe une version de contact (pour les sous-variétés legendriennes
de J'X) du théoreme d’existence de Sikorav, di a Yu. Chekanov ([Chl]),
mais pas, a ma connaissance, pour le théoreme d’unicité de Viterbo.

DEFINITION. ~ Soit X, := {(x,y) € L | tk D7(x,y) < dimX} D’ensemble
des points singuliers de L. La caustique de L est la projection m(X;) sur X
de ’ensemble des points singuliers.

Génériquement, ’ensemble des points singuliers est I’union de la variété
réguliere de codimension 1 des points singuliers simples (ou le rang de Dr
est dimX — 1) et d’une réunion finie de variétés de codimension au moins 3
(voir [Arl]).

On rappelle que L est exacte si la 1-forme de Liouville ydx, restreinte
a L, est exacte, c’est-a-dire s’il existe une fonction (: L — R telle que
ydx|p = d¢. Si c’est le cas, on peut associer & L une sous-variété legendrienne

) Cest-a-dire compacte et sans bord.
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L de ’espace J'X = {(x,z,y)} des jets d’ordre 1 sur X (muni de la forme
de contact standard dz — ydx), définie a une constante en z pres:

L:={(g,¢(q,p)p) | (q,p) € L}.
DEFINITION. On appelle front d’onde ou diagramme de Cerf de L I’'image

Fy de L par la projection (x,z,y) — (x,z) dans 1’espace J°X = {(x,z)} des
jets d’ordre O sur X.

Soit S(x; &) une fgqi de L.

DEFINITION. 1’ensemble de Maxwell M; de L est ’ensemble des points
x € X tels que la fonction de Morse & — S(x; &) n’est pas excellente.

ensemble de Maxwell

caustique

FIGURE 4
Caustique et ensemble de Maxwell d’une courbe lagrangienne et du front associé

REMARQUES.
(1) D’apres le théoreme d’unicité de Viterbo, I’ensemble de Maxwell ne

dépend que de L.
(2) La projection naturelle F; — X est une fibration en dehors de la

caustique et de 1’ensemble de Maxwell (cf. Figure 4).
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(3) L’ensemble de Maxwell d’une sous-variété lagrangienne générique est
une hypersurface stratifiée (c’est-a-dire une réunion finie de variétés lisses, les
strates, connexes par arcs, deux a deux disjointes, telles que la fermeture de
chaque strate est la méme strate et une réunion finie de strates de dimension
plus petite), voir [Ar2]. ’

(4) La caustique et I’ensemble de Maxwell d’une sous-variété lagrangienne
générique ont mesure nulle.

2.2 LA SOLUTION GEOMETRIQUE DE (PC)

Considérons le probléme de Cauchy pour 1’équation de Hamilton-Jacobi
sur une variété Q (sans bord, mais pas forcément compacte) de hamiltonien
H : [0,4+00[xT*Q — R de classe C? dans ]0,+oo[xT*Q et continue au
bord, et donnée initiale uy: Q — R de classe C!:

- {&u(z‘, q) + H(t,q,0,u(t,q)) =0, Y 1>0, g€ 0

u(0,q) = uo(q), VgeQ.

Dans cette section on construit une sous-variété¢ lagrangienne du fibré
cotangent de I’espace temps, la solution géométrique de (PC). Le théoreme
de Sikorav-Viterbo permet de lui associer une “unique” fgqi S(z, q; £). Cette
fonction est définie a une constante additive prés; une fois cette constante
convenablement fixée, S est une solution, en générale multivoque, de (PC).
Son graphe ©)

{(t,9,5(t,4;8) | 9eS(1, 45 ) = 0}
est le front d’onde de la solution géométrique.

Dans la prochaine section on utilisera la méthode de minimax pour choisir
en tout point (f,g) un unique point critique de & — S(z, g; €) ; on obtiendra de
cette maniere une section du front, qui s’avere étre le graphe d’une fonction
bien définie, solution faible de (PC).

Sur le fibré cotangent T°Q = {(q,p)}, muni de la forme symplectique
canonique dp A dg, le champ hamiltonien Xy = (0,H, —0,H) induit le flot
¢: [0, +0o[XT*Q — T*Q. Ses composantes ¢'(g,p) = (§(t), p(t)), que I’on
appelle les caractéristiques de Xy, sont les solutions des équations de Hamilton

{ 43y = B,H(t, §(t), pD))
4p(t) = —8,H(1, §(0), p(r)),
telles que g(0) =g et p(0) = p.

) Plus précisément, le contour apparent du graphe de S, projection le long de I’axe des .
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Soit Ag = {(g,duo(q)) | ¢ € Q} la sous-variété lagrangienne de 7*Q
engendrée par la donnée initiale, et A, := ¢'(Ag) son évoluée au temps ¢.

REMARQUES.

(1) La sous-variété Ay est isotope a la section nulle de 7*(Q, I'isotopie
étant engendrée par I’hamiltonien —uy.

(2) Chaque A, est isotope a la section nulle de 7*Q; en effet A; est
isotope a Ag par I’isotopie ¢, et les isotopies forment un groupe.

(3) Il s’ensuit que A, est exacte et, d’apres le théoreme de Viterbo, admet
une unique fgqi S«(q;§).

Considérons maintenant la variété “espace-temps” Q := R x Q, et son fibré
cotangent 7*Q = {(¢,¢; 7, p)}, muni de la forme symplectique dpAdg-+drAdt.
Le hamiltonien autonome XH(t¢,q;7,p) := 7 + H(t,q,p) engendre le flot
®: [0, 400[xT*Q — T*Q, de composantes

D*(t,q;7,p) = (t+5,4(t + ) 7(t + 5), Bt +9))

ol g,p sont les caractéristiques de Xy telles que g(r) = g et p(t) = p, et
7~-(lk) = _H<t7 Q(t%ﬁ(t)) .
Pour tout ¢ > 0, considérons I’application
i "0 —=T°Q,  (g,p) = (t,q:—H(1,4,p),p).

Un calcul direct montre que la variété que I'on obtient par la réunion des
courbes caractéristiques du flot @, sortant de iy(Ay),

A= ®(io(A) C T*Q,
50
est lagrangienne. De méme, pour tout 7 > 0 fixé, la sous-variét€é de 79
A= | ) @ (io(Ao)
0<s<T
est aussi lagrangienne.

DEFINITION. On appelle A la solution géométrique de (PC), et AT la
solution géométrique tronquée au temps T .

REMARQUE. Pour s fixé, ®° translate A d’un temps s le long les
caractéristiques, c’est-a-dire:
@* (i(Ar) = D 0 D (ig(Ao)) = @7 (io(Ao)) = ste(Asts)

(propriété de semi-groupe du flot).
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THEOREME 2.1. Pour tout T > 0, la solution géométrique tronquée au
temps T est isotope a la section nulle {(t,q;0,0) | —T <t <0,q9 € Q}.

AT

d-T(AT)

FIGURE 5

L’isotopie entre la solution géométrique tronquée et la section nulle

Démonstration. Puisque pour des temps petits 1l existe une solution
classique de (PC), 1l est facile de se ramener, par une isotopie, au cas
ou la solution géométrique A coincide avec la section nulle pour tout temps
inférieur a un certain ¢ > 0 assez petit. Alors pour tout # < ¢ < €, on a
H(t,q,p) = 0. On peut considérer I’extension suivante de H, de classe C?:

H(t,q,p), pour tout t>0, (¢,p) € T*Q,

H(t,q,p) :=
“r 0 pour tout £ <0, (¢,p) € T*Q.

Le flot ® engendré par H := 7+ H étend le flot ® 2 R tout entier. La
sous-variété lagrangienne

A= | @ Gio(A0))
SER

~de T*Q coincide avec A dans le demi-espace {r > 0} et avec la section nulle
~dans {t < O}. Par conséquent, pour tout 7 > 0 fixé, ®~7 est une isotopie
~entre AT et la section nulle (cf. Figure 5). [

| On peut ainsi appliquer le théoréme de Sikorav-Viterbo aux solutions
- géométriques tronquées de (PC).
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COROLLAIRE. Pour tout T > 0 fixé, AT admet une unique fgqi S(t,q;§)
(modulo les opérations d’équivalence (i) et (ii)), telle que son graphe restreint
a t =0 coincide avec le graphe de la donnée initiale uy.

- Dans la suite, S sera toujours une telle fgqi.

Démonstration. Soit S(z, g; &) T'unique fgqi de AT. Or, cette fonction est
une primitive de la forme de Liouville pdg de Ag :

dS(0, q; €0(q)) = duo(q)dq,

ot £y(q) est le seul point critique de € — So(g; €). Par conséquent il existe
une unique constante C telle que § := S+ C vérifie S(0, g; £0(9)) = uo(q)
pour tout g € Q. L[]

REMARQUE. On peut construire une famille génératrice globale de la
solution géométrique A comme suit. La fonctionnelle d’action [ pdq — Hdt
est une famille génératrice formelle (I’espace de parametre étant de dimension
infinie) de A. En utilisant une méthode de point fixe, proposée par Amann-
Conley-Zehnder, on obtient une vraie fonction génératrice, voir [Car].

2.3 LA SOLUTION DE MINIMAX

Soient t > 0,q € Q et S(¢, q; ) la fgqi de la solution géométrique tronquée
AT, pour T > t. La fonction £ +— S(z, g; ) est quadratique a I’infini, donc on
peut lui associer le niveau critique de minimax, étudié au §1.3.

DEFINITION (Chaperon). On appelle solution de minimax de (PC) la
fonction .

u(t, q) := minmax{& — S(t,q; &)} .

REMARQUE. L autre solution que l’on peut construire avec ce méme
argument (cf. [Chal), la solution de max-min est, pour le Théoreme 1.9,
Ia méme solution.

M. Chaperon ([Cha]), T. Joukovskaia ([Jou]), C. Viterbo ([Vi2]) ont étudié
les propriétés de cette fonction; en particulier Joukovskaia a classifi€é les
singularités génériques de u en dimension petite (dimQ < 2).
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THEOREME 2.2 (Chaperon). La solution de minimax est une solution
faible™) de (PC), lipschitzienne sur chaque intervalle compact [0,T], et
indépendante du choix de la fgqi.

REMARQUE. Pour le Théoréme 1.8, on peut supposer, sans perte de
généralité, que la solution géométrique de (PC) soit générique. Dans ce
cas I’ensemble m(X) U M, est de mesure nulle.

Démonstration. Soit A générique. La continuité de la solution de minimax
u est une conséquence immédiate de la stabilit¢ du minimax par petites
déformations. En effet, fixons un point (f, go) de ’espace-temps et un € > 0.
Pour tout (t,q) assez proche de (fp,qo), la fonction £ — S(¢,q;§) est
une perturbation de & — S(f9, go; &) aussi petite que ’on veut. D’apres le
Théoreme 1.8, on déduit que |u(to, qo) — u(t, q)| < €.

Les autres propriétés de la solution de minimax sont simples a démontrer;
on renvoie pour les détails aux travaux déja cités.

Soit (fo,q0) ¢ Ma, to > 0. Par le théoréme de la fonction implicite il
existe un voisinage U de (¢, go) dans ]0, +oo[xQ ou le point critique libre de
£ — S(t,q; €) est une fonction &(¢,q) de classe C', définie par 0:5(t,q;6) = 0.
Alors pour tout (¢,9) € U on a u(t,q) = S(t,q;£(t,g)), donc u est de classe
C!, et vérifie I’équation de Hamilton-Jacobi; en effet

Ou(t,q) = 0:S(t,q;£(t,q)),  Oqult,q) = 8,5(t, q; (1, 9))

et par définition de fgqi on a 0:;5(t, g; &(t,q) + H(, g, 0,5(2, g; £, q)) = 0.
Donc, en dehors de I’ensemble de Maxwell de A, u est dérivable et vérifie
I’équation de Hamilton-Jacobi. La solution de minimax satisfait la donnée
initiale, parce que I’on a choisi la fgqi de la solution géométrique telle que
S0, g; £0(q)) = uo(q), ou &y(g) est le seul point critique de & — S0, q;¢).

Pour tout 0 < T < +o00, u|jo,r est lipschitzienne: en effet H et ug sont
lipschitziens, donc en un temps fini les espaces tangents aux fronts d’onde ne
sont jamais verticaux.

On déduit enfin du théoreme de Viterbo que u ne dépend pas du choix
de S parmi les fgqi de A telles que S(0,q;£() = up(q). [

REMARQUE. Viterbo a montré que les mémes résultats restent vrais
pour hamiltoniens et données initiales seulement lipschitziens, voir [Vi2].
On approche H et up par des suites de fonctions {H,}.en et {ug,}nen,

") Cest-a-dire u est continue et presque partout dérivable, et en ces points vérifie 1’équation
de Hamilton-Jacobi; de plus u satisfait la donnée initiale.
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suffisamment régulieres, convergentes vers H et uy respectivement. Pour
chaque n € N on construit la solution de minimax u, du probleme de Cauchy
de hamiltonien H, et donnée initiale (up,); il suit que la limite lim,_, oo Un
est la solution de minimax du probleme de Cauchy de hamiltonien H et
donnée initiale uy.

3. CARACTERISATION GEOMETRIQUE DE LA SOLUTION DE MINIMAX

3.1 NOTATIONS

Soit J°R = {(g,2)} ~ R? I’espace des jets d’ordre 0 sur R, m: J'R — R
la projection naturelle (g,z) — ¢. Un front d’onde dans J'R est la projection
dans J'R d’une courbe legendrienne de J'R = {(q,z,p)} ~ R® par
m:(q,z,p) — (g,2). Pour un front générique, les seules singularités possibles
sont des cusps et des auto-intersections transverses.

Soit F un front de J°R. On appelle section de F toute partie connexe
maximale o qui est le graphe d’une fonction ., : (o) — R de classe C!
par morceaux. Une branche de F est une section de classe C!.

Un front est long si, en dehors d’un compact de R, il est le graphe
d’une fonction, plat si sa tangente n’est jamais verticale. On peut dans ce
cas coorienter le front en fixant en tout point le vecteur orthonormal dont la
coordonnée en z est positive. Si le front est ainsi orienté, on peut distinguer
deux types de cusp: montant, si en suivant le front, on passe d’une branche
a I'autre en la direction de la normale fixée, descendent si on passe en la
direction opposée.

Deux courbes legendriennes de J!R sont isotopes (par une isotopie
legendrienne) s’il existe un chemin de I'une a I’autre dans 1’espace des courbes
legendriennes plongées de J'R. Pour la famille correspondante de fronts les
perestroikas qui interviennent génériquement sont montrés a la Figure 6;
il s’agit des projections des mouvements de Reidemeister pour les noeuds
relevement des fronts dans I’espace de contact (voir par exemple [Ar3]) : queue
d’aronde (Q), pyramide (P), porte-monnaie (B) et auto-tangence siire®) (J7).

Les auto-tangences dangereuses®) sont interdites car elles correspondent
a un point d’auto-intersection de la courbe legendrienne dont le front est la
projection. Pour un front plat toutes les auto-tangences sont dangereuses.

8) Au point d’auto-tangence la coorientation des deux branches est opposée.
) Au point d’auto-tangence la coorientation des deux branches est la méme.




	2. La solution de minimax
	2.1 Rappels de géométrie symplectique
	2.2 La solution géométrique de (PC)
	2.3 La solution de minimax


