
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 49 (2003)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LECTURES ON QUASI-INVARIANTS OF COXETER GROUPS AND
THE CHEREDNIK ALGEBRA

Autor: Etingof, Pavel / Strickland, Elisabetta

Kapitel: 1.2 Elementary properties of $Q_m$

DOI: https://doi.org/10.5169/seals-66677

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-66677
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


QUASI-INVARIANTS OF COXETER GROUPS 37

Example 1.2. The group W — Z/2 acts on C by s(u) — v. In

this case m is a non negative integer and E {s}. So this definition says

that £ is in Qm iff q(x)-q(-x) is divisible by x2m+1. It is very easy to write

a basis of Qm. It is given by the polynomials {x2t \ i> 0} U {x2l+l \i>m}.

1.2 Elementary properties of Qm

Some elementary properties of Qm are collected in the following proposition.

Proposition 1.3 (see [FV] and references therein).

1) cmw C Qm c C[f)], ßo C[fj], Qm C Qm' if m > m',

nmö»-cr.
2) Qm w graded subalgebra of C[f)].

3) The fraction field of Qm is equal to C(f)).

4) Qm is a finite C[f)]w -module and a finitely generated algebra. C[()] is a

finite Qm-module.

Proof. 1) is immediate and has already been mentioned in 1.1.

2) Clearly Qm is closed under addition. Let p,q G Qm. Let s G S. Then

p(x)q{x) - p{sx)q(sx) (p{x) - p{sx))q{x) + p(sx)(q(x) - q{sx)).

Since both p(x) - p(sx) and q(x) - q(sx) are divisible by a]Ms+l, we deduce

that p(x)q(x) - p(sx)q(sx) is also divisible by a2ms+l, proving the claim.

3) Consider the polynomial

This polynomial is uniquely defined up to scaling. One has Ô2m+i(sx) —

—Ö2m+ iW f°r ea°h s e X, hence ö2m+i C Qm. Take /(x) G C[f)]. We claim
that f{x)52m+ iW G Qm. As a matter of fact,

I /(V)52m+1 (X) ~ f(sx)Ö2m+1 (sx) (f(x) + f(sx))Ô2m+1 (x)

and by its definition ô2m+\ (x) is divisible by as(x)2msJrl for all s G £. This

implies 3).

j 4) By Hilbert's theorem on the finiteness of invariants, we get that C[f)]w
j

is a finitely generated algebra over C and C[(j] is a finite C[f)]w-module and

\ hence a finite Qm -module, proving the second part of 4).
I Now Qm C C[f)] is a submodule of the finite module C[f)] over the
j Noetherian ring C[ï)]w. Hence it is finite. This immediately implies that Qm

j is a finitely generated algebra over C.
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Remark. In fact, since W is a finite Coxeter group, a celebrated result |

of Chevalley says that the algebra C[f)]w is not only a finitely generated j

C-algebra but actually a free polynomial) algebra. Namely, it is of the

form C[#i,... ,#n], where the qt are homogeneous polynomials of some

degrees dt. Furthermore, if we denote by H the subspace of C[f)] of harmonic j'

polynomials, i.e. of polynomials killed by W-invariant differential operators \

with constant coefficients without constant term, then the multiplication I

map j

cihlu -cihi I

is an isomorphism of C[i)]w- and of W7-modules. In particular, C[f)] is a free

C[f}]v|/-module of rank |W|. I

1.3 The variety Xm and its bijective normalization j

Using Proposition 1.3, we can define the irreducible affine variety j

Xm Spec(gm). The inclusion Qm C C[f)] induces a morphism |

t : ï) y xm, I

which again by Proposition 1.3 is birational and surjective. (Notice that in j

particular this implies that Xm is singular for all m ^ 0.) j

In fact, not only is ir birational, but a stronger result is true. Î

Proposition 1.4 (Berest, see [BEG]), n is a bijection.

Proof. By the above remarks, we only have to show that 7r is injective. j

In order to achieve this, we need to prove that quasi-invariants separate points
of f), i.e. that if z,y f) and r / y then there exists p G Qm such that j

p(z) ^ piy). This is obtained in the following way. Let Wz C W be the j

stabilizer of z and choose / G C[f)] such that f(z) / 0, f(y) 0. Set

p(x)=[J as(x)2m>+1 n f(wx).
.sCX isz^z w£Wz

We claim that p(x) e Qm. Indeed, let s EX and assume that s(z) ^ z.

We have by definition p{x) as(x)2ms+lp(x), with p(x) a polynomial. So j

p(x) - p(sx) as{.x)2ms+lp(x) - as(sx)2ms+lp(sx) as(x)2ms+l (p(x) + p(sx)). j

If on the other hand, sz z, i.e. s G Wz, then s preserves the set j

W\WZ, and hence preserves FI^2:n(w\wz) &s(x)2ms+1 (as it acts by -1 on the

products Usezas(x)2m^1 and ^S(x)2ms+l Since Y[weWzf(wx) is
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