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166 A. D. HWANG

THEOREM 2.5. Let ¢: 1 — R be a momentum profile. There exists an
abstract surface of revolution (D, g,), unique up to isometry, such that

o The image of the moment map 7: D — R is I.
o The orbit {T = 19} has length 2w/ o(1) for all 9 € 1.

The Gaussian curvature of g, is K = —%(,0’ (1) wherever the metric is smooth,
and the angular defect at a fixed point is (2 — |¢'|)w. The metric is complete
at an end {T = B} if and only if one of the following holds :

Fodx
(INFINITE-AREA END) |83| = oo and

., V)

(SMOOTH EXTENSION) [ is finite, p(6) =0, and |¢'(6)| = 2.
(FINITE-AREA END) B is finite, o(6) =0, and ¢'(B) = 0.

diverges.

3. METRICS OF SPECIFIED CURVATURE

In momentum coordinates, specifying the Gaussian curvature of a metric
in terms of zonal area is a matter of integrating twice. The construction is
therefore well-adapted to exhibiting a variety of interesting metrics.

CONSTANT CURVATURE

Theorem 2.5 and Proposition 2.3 give a simple classification of surfaces
of revolution that have constant Gaussian curvature, together with an easy
characterization of when the abstract surface embeds in R® ‘as a surface
of revolution. Many surfaces of constant negative curvature (such as the
pseudosphere) are seen to be portions of complete abstract surfaces of
revolution.

SMOOTH, COMPLETE METRICS. A metric of constant Gaussian curvature
corresponds to a quadratic profile ¢, and the metric is smooth and complete
if and only if

e >0 on R, or
e | (B)] =2 at some (hence each) root of ¢.

Table 3.1 lists smooth, complete surfaces of revolution that have constant
Gaussian curvature. Most of these metrics embed only partially in R* as
surfaces of revolution, and no zone of the Poincaré metric (on the disk A)
embeds as a surface of revolution. The pseudosphere is the zone in the
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punctured disk A* corresponding to the momentum interval (0,1/c?). In the
last column, the annulus is determined up to conformal equivalence by the
ratio of the inner and outer radii. Each metric is scaled to have curvature +c*
or 0, metrics are grouped by the sign of their curvature, and the momentum
profiles are translated to have o = 0 when possible. For each integrand 1in
Table 3.1, the integrals in equation (2.6) are elementary, and the 7 integrals
can be inverted explicitly.

TABLE 3.1
Smooth, complete, constant-curvature surfaces of revolution

P! C (A A A% Annulus

o(T) || 27 — Ar? 27 A2 21 + 3277 cr? A2 + 2

7€ | [0,2¢77] [0, o0) R [0, 00) (0,00) | (—00,00)

te | [00,00] || [-00,00) | R | [-00,0) | (=00,0) | (=5 )

OTHER EXAMPLES. Every quadratic polynomial that is positive somewhere
gives rise to a surface of constant Gaussian curvature via the momentum
construction, though with exactly one exception (the round sphere) the
resulting metric is singular and/or not embedable in R®. There is a pleasant
correspondence between quadratic profiles and the “standard zoo” presented
in elementary differential geometry. Figures 3.1 and 3.2 depict the negative
curvature case; positive curvature is similar.

A remarkable family arises from quadratic profiles ¢(7) = A\? — 72 with
A > 1. At their smooth points these metrics have unit curvature, yet they admit
closed geodesics of length 2w A > 27, in seeming contradiction with Myers’
theorem. The discrepancy is resolved by (2.11): The conical singularities at
the fixed points carry negative curvature. Viewing these examples as surfaces
in R?, the explanation is different: The portion that embeds is not complete.

AREA, DISTANCE, AND ORBIT LENGTH. An abstract surface of revolution
is said to have bounded orbits if the profile is a bounded function. If a surface
has bounded orbits, and if an end of the surface has finite length, then the
end also has finite area. Inversely, if the orbits are not bounded at an end of
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FIGURE 3.1

Quadratic momentum profiles; the heavy portion of each defines a metric
that embeds in R3 as a surface of revolution, see Figure 3.2

infinite length, then the end necessarily has infinite area. Remarkably, these
are the only general conclusions that can be drawn about abstract surfaces
of revolution; the intuition furnished by surfaces of revolution in R3 can be
misleading ! Two examples illustrate what can happen:

e The data I = [0,00), ¢(7) = 27 + 7> define a metric of infinite area on
the disk, in which the distance to the edge of the disk is finite.

e The data I =[0,1), w(r) = 27/(1 — 7) give a metric on the disk with
unbounded orbits but having finite area.

.

Neither metric is complete, and neither can be extended non-trivially.

EXTREMAL METRICS

The Calabi energy of a metric g is the integral of the square of the
Gaussian curvature,

E(g) = /KZdA.
z

A metric is extremal in the sense of Calabi if the metric is critical for the
energy among all smooth metrics of fixed area.
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I

FIGURE 3.2

The geometric profiles that correspond to the momentum profiles in Figure 3.1.
Each generates a surface of constant curvature —1

THE CALABI ENERGY FOR METRICS WITH CONICAL SINGULARITIES. The
space of surfaces of revolution of area 4r is identified with the space of
momentum profiles ¢: [—1,1] — R. Assume from now on that profiles are
of class C* and vanish at 1. The Gaussian curvature is K = —3¢" () for
T € (—1,1), while the curvature form is the distribution

KdA =r|(2+¢ 1) + (2 @' (~D)8 | — 3e"(r)dA.
The Calabi energy is the integral of K?>dA over X:

v

1
(3.1) E(gy) = 5 {—90”(1)(2 +¢'(1) —"(=D(2 = ¢'(-1D)) +/ (90")2} :
—1

Differentiating with respect to ¢ and integrating by parts twice yields

2. 7 7 1ol Y/ 1 ! .
32 —Egy)==2(¢"(D+¢"(=1) + ("¢ — ¢’y )1 1+2/ eV .
- —1

For variations supported in (—1,1), the boundary term contributes nothing.
Consequently, g, is extremal only if ¢ is a cubic polynomial.

REMARK 3.1. The Euler-Lagrange equation (due to Calabi [2]) for a
smooth extremal metric on a compact holomorphic manifold is simple and
striking: The scalar curvature of the metric is a holomorphy potential —
a function whose gradient is a holomorphic vector field. To see how this
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condition is related to ¢ being cubic, observe first that ¢ is cubic if and only
if the Gaussian curvature (a.k.a. the scalar curvature, since X is a complex
curve) is an affine function of 7. But the complex gradient of 7 is the
holomorphic vector field w—a%. Conversely, affine functions of 7 are the only
S!-invariant functions with holomorphic gradient, for if f(7) is a holomorphy
potential on P!, then f/(7) is a global holomorphic function, hence constant.

Calabi [2] showed that the round metric is the only smooth extremal metric
of area 47 on the sphere. This fact is easily recovered for surfaces of revolution.
Smoothness at the ends of the momentum interval means ¢'(£1) = F2. If the
profile is not quadratic, there exists # > 1 such that o(7) = c(1—72)(B - 7).
This implies |¢'(—=1)| # |¢’(1)|, so the metric is not smooth.

Equation (3.2) contains an additional condition for extremality,

1
(3.3) 2"+ " D) + "¢ — '] =0 forall ¢,
=]

which says that the energy supported at the fixed points is constant infinites-
imally, a condition on the domain of the energy functional as much as a
restriction on (. Without some constraint on the space of metrics, (3.3)
is not satisfied, even for the round metric. Indeed, the family of profiles
(1) = c(1 — 72), with ¢ > 0, determines a family of metrics for which the
curvature concentrates at the fixed points as ¢ — 0, and the energy does not
achieve its infimum.

o(r) =11+ — 7Y

S -
T ot

—1.0 —-0.5 0.0 0.5 1.0

FIGURE 3.3

A cubic momentum profile defining a smooth metric

Two natural constraints on the variation are:
e The energy carried by each end is fixed, so (3.3) holds by fiat.
e The cone angles are fixed, i.e., <,'o’ vanishes at the endpoints.
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When the energy carried by each end is fixed, every metric of constant
curvature is critical. In addition, every cubic polynomial

(1) =c(l+ 7)1 —7)B —7)

with 8 > 1 and ¢ > 0 gives rise to a critical metric. Among these is a
unique smooth metric, corresponding to the profile ¢(7) = %(1 + 7)1 — 7).
The metric g, is defined on C and has area 47. Because lo/'(T)] < 2 for
—1 < 7 < 1 (with equality if and only if 7 = —1), the surface (C, g,,) embeds
isometrically in R?, as a “teardrop” of radius —4_ and with an infinitely long

33
tail, Figure 3.4.

y=£&x

FIGURE 3.4
The embedded geometric profile

Under the weaker restriction that the variation fixes cone angles, the round
metric is critical, but is the only such metric. Indeed, (3.3) becomes

1
—2(¢" (D +¢"(=D) = (¥'¢")|

1:O for all ¢ .

Since ¢ is cubic, there exist constants a; such that ¢'(7) = a; +2a,7+3as72.
The metric closes up at both ends, so f_ll o' =0, or a; +az = 0. A short
calculation shows that

(az+ay+ D@ " () + (—az +ay + 1) (=1) =0 for all ¢ .

Consequently, a3 = a; + 1 = 0; this means ¢ is a quadratic polynomial with
leading coefficient —1 that vanishes at +1, so g, is the round metric.
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literature. An instance of the integral transform (2.6) appears in a remark of
Calabi [1]. The construction as treated in this note perhaps owes its biggest
debt to a paper of Koiso and Sakane [6], in which momentum coordinates are
used to construct positive Finstein-Kihler metrics. The paper [4] is in part an
attempt to frame various differential-geometric constructions in “momentum”
language, while simultaneously unifying and generalizing existing results. The
momentum construction for surfaces of revolution is elementary, but seems not
to be widely appreciated. It is hoped that the present note will help popularize
this little gem of differential geometry.

It i1s a pleasure to thank Michael A. Singer and John Bland for many
illuminating discussions, and the referees for several invaluable suggestions.
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