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ON THE CLASSIFICATION OF RATIONAL KNOTS

by Louis H. KAUFFMAN and Sofia LAMBROPOULOU

ABSTRACT. In this paper we give combinatorial proofs of the classification of
unoriented and oriented rational knots based on the now known classification of
alternating knots and the calculus of continued fractions. We also characterize the
class of strongly invertible rational links. Rational links are of fundamental importance
in the study of DNA recombination.

1. INTRODUCTION

Rational knots and links comprise the simplest class of links. The first
twenty five knots, except for 8s, are rational. Furthermore all knots and links
up to ten crossings are either rational or are obtained by inserting rational
tangles into a small number of planar graphs, see [6]. Rational links are
alternating with one or two unknotted components, and they are also known
in the literature as Viergeflechte, four-plats or 2-bridge knots depending on
their geometric representation. More precisely, rational knots can be represented
as:

e plat closures of four-strand braids (Viergeflechte [1], four-plats). These
are knot diagrams with two local maxima and two local minima.

e 2-bridge knots. A 2-bridge knot is a knot that has a diagram in
which there are two distinct arcs, each overpassing a consecutive sequence
of crossings, and every crossing in the diagram is in one of these sequences.
The two arcs are called the bridges of the diagram (compare with [5], p.23).

e numerator or denominator closures of rational tangles (see Figures 1, 5).
A rational tangle is the result of consecutive twists on neighboring endpoints
of two trivial arcs. For examples see Figure 1 and Figure 3.
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T =[2], [-2], [3]] N(T)

FIGURE 1

A rational tangle and a rational knot

All three representations are equivalent. The equivalence between the first
and the third is easy to see by planar isotopies. For the equivalence between
the first and the second representation see for example [5], pp.23, 24. In
this paper we consider rational knots as obtained by taking numerator or
denominator closures of rational tangles (see Figure 5).

The notion of a tangle was introduced in 1967 by Conway [6] in his work
on enumerating and classifying knots and links, and he defined the rational
knots as numerator or denominator closures of the rational tangles. (It is worth
noting here that Figure 2 in [1] illustrates a rational tangle, but no special
importance is given to this object. It is obtained from a four-strand braid by
plat-closing only the top four ends.) Conway [6] also defined the fraction of
a rational tangle to be a rational number or co. He observed that this number
for a rational tangle equals a continued fraction expression with all numerators
equal to one and all denominators of the same sign, that can be read from a
tangle diagram in alternating standard form. Rational tangles are classified by
their fractions by means of the following theorem.

THEOREM 1 (Conway, 1975). Two rational tangles are isotopic if and
only if they have the same fraction.

Proofs of Theorem 1 are given in [21], [S5] p. 196, [13] and [15]. The
first two proofs invoked the classification of rational knots and the theory of
branched covering spaces. The 2-fold branched covering spaces of $® along
the rational links give rise to the lens spaces L(p,q). See [33] for a pioneering
treatment of branched coverings. The proof in [13] is the first combinatorial
proof of this theorem. The proofs in [21], [5] and [13] use definitions different
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from the above for the fraction of a rational tangle. In [15] a new combinatorial
proof of Theorem 1 is given using the solution of the Tait Conjecture for
alternating knots [42], [20] adapted for tangles. A second combinatorial proof
is given in [15] using coloring for defining the tangle fraction.

Throughout the paper by the term ‘knots’ we will refer to both knots
and links, and whenever we really mean ‘knot’” we shall emphasize it. More
than one rational tangle can yield the same or isotopic rational knots and the
equivalence relation between the rational tangles is mapped into an arithmetic
equivalence of their corresponding fractions. Indeed we have the following

THEOREM 2 (Schubert, 1956). Suppose that rational tangles with fractions

g and z—: are given (p and q are relatively prime; similarly for p' and q').

If K (%) and K (Z—j) denote the corresponding rational knots obtained by taking

numerator closures of these tangles, then K(g—) and K(z—:) are isotopic if and
only if

1. p=p and

2. either g=¢q modp or ¢gq =1 modp.

Schubert [31] originally stated the classification of rational knots and links
by representing them as 2-bridge links. Theorem 2 has hitherto been proved
by taking the 2-fold branched covering spaces of $° along 2-bridge links,
showing that these correspond bijectively to oriented diffeomorphism classes of
lens spaces, and invoking the classification of lens spaces [28]. Another proof
using covering spaces has been given by Burde in [4]. See also the excellent
notes on the subject by Siebenmann [35]. The above statement of Schubert’s
theorem is a formulation of the Theorem in the language of Conway’s tangles.

Using his methods for the unoriented case, Schubert also extended the
classification of rational knots and links to the case of oriented rational knots
and links described as 2-bridge links. Here is our formulation of the Oriented
Schubert Theorem written in the language of Conway’s tangles.

THEOREM 3 (Schubert, 1956) Suppose that orientation- companble ratio-
nal tangles with fractions 2 and g are given with q and ¢ odd (p and q

are relatively prime; szmllarly for p and ¢’ ). If K(p ) and K(p ) denote the
corresponding rational knots obtained by taking numemtor closures of these
tangles, then K(p ) and K(p ) are isotopic if and only if

1. p=p and

2. either g=¢q mod2p or qgq =1 mod 2p.
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Theorems 2 and 3 could have been stated equivalently using the denom-
inator closures of rational tangles. Then the arithmetic equivalences of the
tangle fractions related to isotopic knots would be the same as in Theorems
2 and 3, but with the roles of numerators and denominators exchanged.

This paper gives the first combinatorial proofs of Theorems 2 and 3 using
tangle theory. Our proof of Theorem 2 uses the results and the techniques
developed in [15], while the proof of Theorem 3 is based on that of Theorem 2.
We have located the essential points in the proof of the classification of rational
knots in the question: Which rational tangles will close to form a specific
knot or link diagram ? By looking at the Theorems in this way, we obtain
a path to the results that can be understood without extensive background in
three-dimensional topology. In the course of these proofs we see connections
between the elementary number theory of fractions and continued fractions,
and the topology of knots and links. In order to compose these proofs we
use the fact that rational knots are alternating (which follows from the fact
that rational tangles are alternating, and for which we believe we found the
simplest possible proof, see [15], Proposition 2). We then rely on the Zait
Conjecture [42] concerning the classification of alternating knots, which states
the following:

Two alternating knots are isotopic if and only if any two corresponding
reduced diagrams on S* are related by a finite sequence of flypes (see Figure 6).

A diagram is said to be reduced if at every crossing the four local regions
indicated at the crossing are actually parts of four distinct global regions in
the diagram (see [19], p.42). It is not hard to see that any knot or link has
reduced diagrams that represent its isotopy class. The conjecture was posed by
P.G. Tait [42] in 1877 and was proved by W. Menasco and M. Thistlethwaite,
[20] in 1993. Tait did not actually phrase this statement as a cenjecture. It
was a working hypothesis for his efforts in classifying knots.

Our proof of the Schubert Theorem is elementary upon assuming the Tait
Conjecture, but this is easily stated and understood. This paper will be of
interest to mathematicians and biologists.

The paper is organized as follows. In Section 2 we give the general set up
for rational tangles, their isotopies and operations, as well as their association
to a continued fraction isotopy invariant. In this section we also recall the
basic theory and a canonical form of continued fractions. In Section 3 we
prove Theorem 2 about the classification of unoriented rational knots by means
of a direct combinatorial and arithmetical analysis of rational knot diagrams,
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using the classification of rational tangles and the Tait Conjecture. In Section 4
we discuss chirality of knots and give a classification of the achiral rational
knots and links as numerator closures of even palindromic rational tangles in
continued fraction form (Theorem 5). In Section 5 we discuss the connectivity
patterns of the four end arcs of rational tangles and we relate connectivity
to the parity of the fraction of a rational tangle (Theorem 6). In Section 6
we give our interpretation of the statement of Theorem 3 and we prove the
classification of oriented rational knots, using the methods we developed in the
unoriented case and examining the connectivity patterns of oriented rational
knots. In Section 6 it is pointed out that all oriented rational knots and links are
invertible (reverse the orientation of both components). In Section 7 we give
a classification of the strongly invertible rational links (reverse the orientation
of one component) as closures of odd palindromic oriented rational tangles in
continued fraction form (Theorem 7).

Here is a short history of the theory of rational knots. As explained in
[14], rational knots and links were first considered by O. Simony in 1882,
[36, 37, 38, 39], taking twistings and knottings of a band. Simony [37] was
the first one to relate knots to continued fractions. After about sixty years
Tietze wrote a series of papers [43, 44, 45, 46] with reference to Simony’s
work. Reidemeister [27] in 1929 calculated the knot group of a special class
of four-plats (Viergeflechte), but four-plats were really studied by Goeritz [12]
and by Bankwitz and Schumann [1] in 1934. In [12] and [1] proofs are given
independently and with different techniques that rational knots have 3-strand-
braid representations, in the sense that the first strand of the four-strand braids
can be free of crossings, and that they are alternating. (See Figure 20 for
an example and Figure 26 for an abstract 3-strand-braid representation.) The
proof of the latter in [1] can be easily applied on the corresponding rational
tangles in standard form. (See Figure 1 for an example and Figure 8 for
abstract representations.)

In 1954 Schubert [30] introduced the bridge representation of knots. He
then showed that the four-plats are exactly the knots that can be represented
by diagrams with two bridges and consequently he classified rational knots by
finding canonical forms via representing them as 2-bridge knots, see [31]. His
proof was based on Seifert’s observation that the 2-fold branched coverings
of 2-bridge knots [33] give rise to lens spaces and on the classification of
lens spaces by Reidemeister [28] using Reidemeister torsion and following the
lead of [32] (and later by Brody [3] using the knot theory of the lens space).
See also [25]. Rational knots and rational tangles figure prominently in the
applications of knot theory to the topology of DNA, see [40]. Treatments of
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various aspects of rational knots and rational tangles can be found in many
places in the literature, see for example [6], [35], [29], [5], [2], [22], [16], [19].

2. RATIONAL TANGLES AND THEIR INVARIANT FRACTIONS

In this section we recall from [15] the facts that we need about rational
tangles, continued fractions and the classification of rational tangles. We intend
the paper to be as self-contained as possible.

A 2-tangle is a proper embedding of two unoriented arcs and a finite
number of circles in a 3-ball B?, so that the four endpoints lie in the
boundary of B>. A rational tangle is a proper embedding of two unoriented
arcs o, o in a 3-ball B?, so that the four endpoints lie in the boundary of
B?, and such that there exists a homeomorphism of pairs:

h: (B, ar,00) = (D* x I, {x,y} x I) (a trivial tangle).

This is equivalent to saying that rational tangles have specific representatives
obtained by applying a finite number of consecutive twists of neighboring
endpoints starting from two unknotted and unlinked arcs. Such a pair of arcs
comprise the [0] or [oo] tangles, depending on their position in the plane,
see illustrations in Figure 2.

FIGURE 2
The elementary rational tangles and the types of crossings

We shall use this characterizing property of a rational tangle as our
definition, and we shall then say that the rational tangle is in twist form.
See Figure 3 for an example.
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FIGURE 3

A rational tangle in twist form

To see the equivalence of the above definitions, let S% denote the two-
dimensional sphere, which is the boundary of the 3-ball B’ and let p
denote four specified points in S%. Let further h: ($%,p) — (S%,p) be a
self-homeomorphism of S$? with the four points. This extends to a self-
homeomorphism % of the 3-ball B® (see [29], page 10). Further, let a denote
the two straight arcs {x,y} x I joining pairs of the four points in the boundary
of B>. Consider now h(a). We call this the tangle induced by h. We note that
up to isotopy (see definition below) & is a composition of braidings of pairs of
points in S? (see [24], pages 61 to 65). Each such braiding induces a twist in the
corresponding tangle. So, if 4 is a éomposition of braidings of pairs of points,
then the extension / is a composition of twists of neighboring end arcs. Thus
h(a) is a rational tangle and every rational tangle can be obtained this way.

A tangle diagram is a regular projection of the tangle on a meridian disc.
Throughout the paper by ‘tangle’ we will mean ‘regular tangle diagram’. The
type of crossings of knots and 2-tangles follow the checkerboard rule: shade
the regions of the tangle (knot) in two colors, starting from the left (outside) to
the right (inside) with grey, and so that adjacent regions have different colors.
Crossings in the tangle are said to be of positive type if they are arranged with
respect to the shading as exemplified in Figure 2 by the tangle [+1], i.e. they
have the region on the right shaded as one walks towards the crossing along
the over-arc. Crossings of the reverse type are said to be of negative type and
they are exemplified in Figure 2 by the tangle [—1]. The reader should note
that our crossing type conventions are the opposite of those of Conway in
[6] and of those of Kawauchi in [16]. Our conventions agree with those of

Ernst and Sumners [10], [40] which in turn follow the standard conventions
of biologists.
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We are interested in tangles up to isotopy. Two rational tangles, T, S,
in B® are isotopic, denoted by T ~ S, if and only if any two diagrams of
them have identical configurations of their four endpoints on the boundary of
the projection disc, and they differ by a finite sequence of the well-known
Reidemeister moves [27], which take place in the interior of the disc. Of
course, each twisting operation used in the definition of a rational tangle
changes the isotopy class of the tangle to which it is applied.

2-TANGLE OPERATIONS. The symmetry of the four endpoints of 2-tangles
allows for the following well-defined (up to isotopy) operations in the class
of 2-tangles, as described in Figure 4. We have the sum of two 2-tangles,
denoted by ‘+’ and the product of two 2-tangles, denoted by ‘x’. This
product ‘x’ is not to be confused with Conway’s product ‘-’ in [6].

In view of these operations we can say that a rational tangle 1s created
inductively by consecutive additions of the tangles [£1] on the right or on
the left and multiplications by the tangles [£1] at the bottom or at the top,
starting from the tangles [0] or [oco]. And since, when we start creating a
rational tangle, the very first crossing can be equally seen as a horizontal
or as a vertical one, we may always assume that we start twisting from the
tangle [0]. Addition and multiplication of tangles are not commutative. Also,
they do not preserve the class of rational tangles. The sum (product) of two
rational tangles is rational if and only if one of the two consists in a number
of horizontal (vertical) twists.

\ /
NN/ T

T+S f \
TS

FIGURE 4
Addition, multiplication and inversion of 2-tangles

The mirror image of a tangle T, denoted —T, is obtained from 7 by
switching all the crossings. So we have —[n] = [—n] and —f’lz—] = [—_i”—]
Finally, the rotation of T, denoted 7", is obtained by rotating 7' on its plane
counterclockwise by 90°, whilst the inverse of T, denoted T', is defined to

be —T". Thus inversion is accomplished by rotation and mirror image. For
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example, [n]i = ﬁ and E—lﬁi — [n]. Note that 77 and T' are in general not
isotopic to T.

Moreover, by joining with simple arcs the two upper and the two lower
endpoints of a 2-tangle 7, we obtain a knot called the Numerator of T,
denoted by N(T). Joining with simple arcs each pair of the corresponding
top and bottom endpoints of T we obtain the Denominator of T, denoted
by D(T). We have N(T) = D(T") and D(T) = N(T"). We point out that the
numerator closure of the sum of two rational tangles is still a rational knot
or link. But the denominator closure of the sum of two rational tangles is not

necessarily a rational knot or link, think for example of the sum %] as é

m Numeratorg | Denominator

T < T > ~
U closure g § closure
N(T) D(T)
FIGURE 5

The numerator and denominator of a 2-tangle

RATIONAL TANGLE ISOTOPIES. We define now two isotopy moves for
rational tangles that play a crucial role in the theory of rational knots and
rational tangles.

DEFINITION 1. A flype is an isotopy of a 2-tangle T (or a knot or link) ap-
plied on a 2-subtangle of the form [+1]+7 or [+1]*¢ as illustrated in Figure 6.
A flype fixes the endpoints of the subtangle on which it is applied. A flype
shall be called rational if the 2-subtangle on which it applies is rational.

XL - X

flype

FIGURE 6
The flype moves
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We define the truncation of a rational tangle to be the result of partially
untwisting the tangle. For rational tangles, flypes are of very specific types.
Indeed, we have:

Let T be a rational tangle in twist form. Then
(1) T does not contain any non-rational 2-subtangles.

(11) Every 2-subtangle of T is a truncation of T.

For a proof of these statements we refer the reader to our paper [15]. As
a corollary we have that all flypes of a rational tangle 7 are rational.

DEFINITION 2. A flip is a rotation in space of a 2-tangle by 180°. We
say that TMP is the horizontal flip of the 2-tangle T if TMP is obtained
from T by a 180° rotation around a horizontal axis on the plane of 7', and
TV is the vertical flip of the tangle T if TVUP is obtained from T by a
180° rotation around a vertical axis on the plane of 7. See Figure 7 for
illustrations.

/

180°
R __6 B

hflip

180°
R S A
I vilip

FIGURE 7
The horizontal and the vertical flip

Note that a flip switches the endpoints of the tangle and, in general, a flipped
tangle is not isotopic to the original one; the following is a remarkable property
of rational tangles:

THE FLIPPING LEMMA. If T is rational, then:

i) T~TVP G T~TM  and (i) T~ (T =T .
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To see (i) and (ii) we apply induction and a sequence of flypes, see [15]
for details. (T) = (IT")" is the tangle obtained from 7 by rotating it on
its plane by 180°, so statement (iii) follows by applying a vertical flip after
a horizontal flip. Note that the above statements are obvious for the tangles
[0], [cc], [n] and ﬁ Statement (iii) says that for rational tangles the inversion
is an operation of order 2. For this reason we shall denote the inverse of
a rational tangle 7 by 1/T, and hence the rotation of the tangle 7' will be
denoted by —1/T. This explains the notation for the tangles [ni] For arbitrary
2-tangles the inversion is an order 4 operation. Another consequence of the

above property is that addition and multiplication by [£1] are commutative.

STANDARD FORM, CONTINUED FRACTION FORM AND CANONICAL FORM FOR
RATIONAL TANGLES. Recall that the twists generating the rational tangles could
take place between the right, left, top or bottom endpoints of a previously
created rational tangle. Using obvious flypes on appropriate subtangles one can
always bring the twists all to the right (or all to the left) and to the bottom (or
to the top) of the tangle. We shall then say that the rational tangle is in standard
form. For example Figure 1 illustrates the tangle (([3] *ﬁ)—*— [2]) in standard
form. In order to read out the standard form of a rational tangle in twist form
we transcribe it as an algebraic sum using horizontal and vertical twists. For
example, Figure 3 illustrates the tangle ((([3] x [?1]) + [—1]) [%4—]) + [2] 1n
non-standard form.

FIGURE 8§

The standard representations

Figure 8 illustrates two equivalent (by the Flipping Lemma) ways of
representing an abstract rational tangle in standard form: the standard
representation of a rational tangle. In either illustration the rational tangle
begins to twist from the tangle [a,] ([as] in Figure 8), and it untwists from
the tangle [a;]. Note that the tangle in Figure 8 has an odd number of sets
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of twists (n = 5) and this causes [a;] to be horizontal. If n is even and [a,]
1s horizontal then [a;] has to be vertical.

5
A
a1 a planar a1 a3 a5
4 ~
-a -a i
: 2 4
Isotopy J

FIGURE 9
The standard and the 3-strand-braid representation

Another way of representing an abstract rational tangle in standard form
is illustrated in Figure 9. This is the 3-strand-braid representation. For an
example see Figure 10. As Figure 9 shows, the 3-strand-braid representation
is actually a compressed version of the standard representation, so the two
representations are equivalent by a planar rotation. The upper row of crossings
of the 3-strand-braid representation corresponds to the horizontal crossings of
the standard representation and the lower row to the vertical ones. Note that,
even though the type of crossings does not change by this planar rotation,
we need to draw the mirror images of the even terms, since when we rotate
them to the vertical position we obtain crossings of the opposite type in the
local tangles. In order to bear in mind this change of the local signs we
put on the geometric picture the minuses on the even terms. We shall use
both ways of representation for extracting the properties of rational knots and

tangles.

FIGURE 10
The ambiguity of the first crossing
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From the above one may associate to a rational tangle diagram in standard
form a vector of integers (aj,ay,...,a,), where the first entry denotes the
place where the tangle starts unravelling and the last entry where it begins to
twist. For example the tangle of Figure 1 is associated to the vector (2, —2,3),
while the tangle of Figure 3 corresponds after a sequence of flypes to the vector
(2, -4, —1,3,3). The vector associated to a rational tangle diagram is unique up
to breaking the entry a, by a unit, i.e. (a1,as,...,a,) = (a1,a2,...,a,—1,1),
if a, >0, and (aj,a,...,a,) = (a,a,...,a, +1,—1), if a, < 0. This
follows from the ambiguity of the very first crossing, see Figure 10. If
a rational tangle changes by an isotopy, the associated vector might also
change.

REMARK 1. The same ambiguity implies that the number » in the above
notation may be assumed to be odd. We shall make this assumption for proving
Theorems 2 and 3.

The next thing to observe is that a rational tangle in standard form can be
described algebraically by a continued fraction built from the integer tangles

[a1],[az], ..., [a,] with all numerators equal to 1, namely by an expression
of the type:
1
[[a1], [a2], ..., [an]] == [a1] + n
[a2] + -+ +
[an~1] +

[an]

for as,...,a, € Z— {0} and n even or odd. We allow [a;] to be the tangle
[0]. This expression follows inductively from the equation

T 1 1
* — = .
[n] 1
[”l]‘l—?

Then a rational tangle is said to be in continued fraction form. For example,
Figure 1 illustrates the rational tangle [[2],[—2],[3]], while the tangles of
Figure 8 and 9 all depict the abstract rational tangle [[a;], [a2], las], [a4], [as]].

1

. . l . . .
The tangle equation T x* W= L implies also that the two simple

algebraic operations: addition of [+1] or [—1] and inversion between
rational tangles generate the whole class of rational tangles. For T =
[lail,[az], ..., [a,]] the following statements are now straightforward.
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L TH+[x1] =[la £ 1], [a2], - - ., [a]],

1
2. "T‘ — [[0]7[a1]7[a2]7"'7[an]]7
3. T =[[-ail,[-al,...,[—all,
4. T = [[al]a[a2]7"'7[an_ 1]7[1]]) if ap >O7

and T =[[ai],[a2],...,[a, + 1],[-1]], if @, <O.

A tangle is said to be alternating if the crossings alternate from under
to over as we go along any component or arc of the weave. Similarly, a
knot 1s alternating if it possesses an alternating diagram. We shall see that
rational tangles and rational knots are alternating. Notice that, according to
the checkerboard shading (see Figure 2 and the corresponding discussion),
the only way the weave alternates is if any two adjacent crossings are of
the same type, and this propagates to the whole diagram. Thus, a tangle or
a knot diagram with all crossings of the same type is alternating, and this
characterizes alternating tangle and knot diagrams. It is important to note that
flypes preserve the alternating structure. Moreover, flypes are the only isotopy
moves needed in the statement of the Tait Conjecture for alternating knots.
An important property of rational tangles is now the following :

A rational tangle diagram in standard form can be always isotoped to an
alternating one.

FIGURE 11
Reducing to the alternating form

The process is inductive on the number of crossings and the basic isotopy
move is illustrated in Figure 11, see [15] for details. We point out that this
isotopy applies to rational tangles in standard form where all the crossings
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are on the right and on the bottom. We shall say that a rational tangle
T = [[a1],[az],-..,[a,]] is in canonical form if T is alternating and n is
odd. From Remark 1 we can always assume n to be odd, so in order to
bring a rational tangle to the canonical form we just have to apply the isotopy
moves described in Figure 11. Note that T alternating implies that the g’s
are all of the same sign.

The alternating nature of the rational tangles will be very useful to us
in classifying rational knots and links. It turns out from the classification of
alternating knots that two alternating tangles are isotopic if and only if they
differ by a sequence of flypes. (See [41], [20]. See also [34].) It is easy to see
that the closure of an alternating rational tangle is an alternating knot. Thus
we have:

Rational knots are alternating, since they possess a diagram that is the
closure of an alternating rational tangle.

CONTINUED FRACTIONS AND THE CLASSIFICATION OF RATIONAL TANGLES.
From the above discussion it makes sense to assign to a rational tangle in
standard form, T = [[a(],[a2],...,[a,]], for a; € Z, ay,...,a, € Z — {0}
and n even or odd, the continued fraction

F(T) =lay,ay,...,a,] :=a; +
? 1

ap—1 + —
a

if T # [oo], and F([oo]) i= 00 = %, as a formal expression. This rational
number or infinity shall be called the fraction of T. The fraction is a

topological invariant of the tangle 7. We explain briefly below how to see
this.

The subject of continued fractions is of perennial interest to mathematicians.
See for example [17], [23], [18], [47]. In this paper we shall only consider
continued fractions of the above type, i.e. with all numerators equal to 1.
As in the case of rational tangles we allow the term @ to be zero.
Clearly, the two simple algebraic operations addition of +1 or —1 and
inversion generate inductively the whole class of continued fractions starting

from zero. For any rational number g the following statements are really
straightforward.
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1. There are a; € Z, ay,...,a, € Z — {0} such that P_ [a1, a0, ..., a,],
q

9, P 1= latl,a,...,a,],
q
3. g:[oyalaa27"')an]>
p
4. i [—a1,—ay,...,—a,],
q
P :
5. - =la,a,...,a,—1,1], if a, >0,
q
mdgzmwmmﬂﬁﬂrﬂ,ﬁ%<0

Property 1 is a consequence of Euclid’s algorithm, see for example [17].
Combining the above we obtain the following properties for the tangle fraction.

1. FT+[E1])=FT) +1,
1 1

2. F) = 5

3, F(-T) = —F(T).

The last ingredient for the classification of rational tangles is the following
fact about continued fractions: Every continued fraction [a1,a,...,a,] can
be transformed to a unique canonical form [Byi, 32, ..., Bnl, where all (;’s
are positive or all negative integers and m is odd.

One way to see this is to evaluate the continued fraction and then apply
Euclid’s algorithm, keeping all remainders of the same sign. There is also
an algorithm that can be applied directly to the initial continued fraction to
obtain its canonical form. This algorithm works in parallel with the algorithm
for the canonical form of rational tangles, see [15] for details.

From the Tait conjecture for alternating rational tangles, from the unique-
ness of the canonical form of continued fractions and from the above properties
of the fraction we derive that the fraction not only is an isotopy invariant
of rational tangles but it also classifies rational tangles. This is the Conway
Theorem. See [15] for details of the proof. For the isotopy type of a rational
tangle with fraction § we shall use the notation [15’]. Finally, it is easy to see
the following useful result about rational tangles: '

Suppose that T + [n] is a rational tangle, then T is a rational tangle.
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3. THE CLASSIFICATION OF UNORIENTED RATIONAL KNOTS

In this section we shall prove Schubert’s theorem for unoriented rational
knots. It is convenient to say that reduced fractions p/g and p/'/q’ are
arithmetically equivalent, written p/q ~ p'/q’, if p = p’ and either g4’ =1
mod p or ¢ = ¢ mod p. We shall call two rational tangles arithmetically
equivalent if their fractions are arithmetically equivalent. In this language,
Schubert’s theorem states that two unoriented rational tangles close to form
isotopic knots if and only if they are arithmetically equivalent.

We only need to consider numerator closures of rational tangles, since
the denominator closure of a tangle 7 is simply the numerator closure of
its rotate —%. From the discussions in Section 2 a rational tangle may be
assumed to be in continued fraction form and by Remark 1, the length of a
rational tangle may be assumed to be odd. A rational knot is said to be in
standard form, in continued fraction form, alternating or in canonical form
if it is the numerator closure of a rational tangle that is in standard form,
in continued fraction form, alternating or in canonical form respectively. By
the alternating property of rational knots we may assume all rational knot
diagrams to be alternating. The diagrams and the isotopies of the rational
knots are meant to take place in the 2-sphere and not in the plane.

) D
T - T
gy S0
N(T) ~ N(T= 1) <> M
[n]
FIGURE 12

Twisting the bottom of a tangle

BOTTOM TWISTS. The simplest instance of two rational tangles being non-
isotopic but having isotopic numerators is adding a number of twists at the
bottom of a tangle, see Figure 12. Indeed, let T be a rational tangle and let
T+ 1/[n] be the tangle obtained from T by adding n bottom twists, for any
n € Z. We have N(T x1/[n]) ~ N(T), but F(T x1/[n]) = F(1/([n]1+1/T)) =
1/(n+ 1/F(T)); so, if

F(T)=p/q,
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then
F(T x1/[n])) =p/(np+q),

thus the two tangles are not isotopic. If we set np + g =4 we have ¢ = ¢’
mod p, just as Theorem 2 predicts.

Reducing all possible bottom twists of a rational tangle yields a rational

tangle with fraction g such that
Pl > 0]
To see this, suppose that we are dealing with —Q}—} with P < Q' and both P and

Q' positive (we leave it to the reader to fill in the details for ' negative).

Then
P

o

1 1

’

“Uth| —

where
O =nP+Q0=0Q modP,

for n and Q positive and QO < P. So, by the Conway Theorem, the
rational tangle [5] differs from the tangle [g] by n bottom twists, and

SO N([é]) ~ N([g]). Figure 13 illustrates an example of this arithmetic. Note
P

that a tangle with fraction g such that [P| > [Q] always ends with a number
of horizontal twists. So, if T = [[a1],[a2],.-.,[a,]] then ay #0. If T is in
twist form then 7' will not have any top or bottom twists. We shall say that
a rational tangle whose fraction satisfies the above inequality is in reduced

form.

{3

[3/11] = [[0L,[3L,[1],[2]] N([3/11])

N([3/11]) ~ N([[1],[2]]) = N([3/2])

FIGURE 13
Reducing the bottom twists
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The proof of Theorem 2 now proceeds in two stages. First, (in 3.1) we look
for all possible places where we could cut a rational knot K open to a rational
tangle, and we show that all cuts that open K to other rational tangles give
tangles arithmetically equivalent to the tangle 7. Second, (in 3.2) given two
isotopic reduced alternating rational knot diagrams, we have to check that the
rational tangles that they open to are arithmetically equivalent. By the solution
to the Tait Conjecture these isotopic knot diagrams will differ by a sequence
of flypes. So we analyze what happens when a flype is performed on K.

3.1 THE CUTS

Let K be a rational knot that is the numerator closure of a rational
tangle 7. We will look for all ‘rational’ cuts on K. In our study of cuts
we shall assume that 7 is in reduced canonical form. The more general case
where T is in reduced alternating twist form is completely analogous and we
make a remark at the end of the subsection. Moreover, the cut analysis in the
case where a; = 0 is also completely analogous for all cuts with appropriate
adjustments. There are three types of rational cuts.

open to

2 @
&= lsotopy\l/ the tangle

FIGURE 14

Standard cuts

THE STANDARD CUTS. The tangle T = [[a], laz], ..., [a,]] is said to arise
as the standard cut on K = N(T). If we cut K at another pair of ‘vertical’
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points that are adjacent to the ith crossing of the elementary tangle [a]
(counting from the outside towards the inside of T') we obtain the alternating
rational tangle in twist form 7' = [[a; — i], [a2], ..., [a.]] + [i]. Clearly, this
tangle is isotopic to 7 by a sequence of flypes that send all the horizontal
twists to the right of the tangle. See the right hand illustration of Figure 14
for i = 2. Thus, by the Conway Theorem, 7' will have the same fraction
as T'. Any such cut on K shall be called a standard cut on K.

THE SPECIAL CUTS. A key example of the arithmetic relationship of the
classification of rational knots is illustrated in Figure 15. The two tangles
I'=[-3] and S=[1]+ ﬁ are non-isotopic by the Conway Theorem, since
F(T)=-3=3/—-1, while F(S) =1+ 1/2 =3/2. But they have isotopic
numerators: N(T) ~ N(S), the left-handed trefoil. Now —1 = 2 mod 3,
confirming Theorem 2.

o -

T=[3]

FIGURE 15

An example of the special cut

We now analyze the above example in general. Let K = N(T), where
T = [la1],]az2],...,[a,]]. Since T is assumed to be in reduced form, it
follows that a; # 0, so T can be written in the form T = [+1] +R or
T = [—-1]+ R, and the tangle R is also rational. .

The indicated horizontal crossing [+1] of the tangle T = [+1]+ R, whick
is the first crossing of [a;] and the last created crossing of 7', may also be
seen as a vertical one. So, instead of cutting the diagram K open at the twc
standard cutpoints to obtain the tangle 7T, we cut at the two other markes:
‘horizontal’ points on the first crossing of the subtangle [a;] to obtain a new
2-tangle T (see Figure 16). T’ is clearly rational, since R is rational. The
tangle T’ is said to arise as the special cut on K.

We would like to identify this rational tangle T’. For this reason we first
swing the upper arc of K down to the bottom of the diagram in order to free
the region of the cutpoints. By our convention for the signs of crossings in
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swing
arc
and

rotate

open to
the tangle
2

FIGURE 16

Preparing for the special cut

terms of the checkerboard shading, this forces all crossings of 7T to change
sign from positive to negative and vice versa. We then rotate K by 90° on
its plane (see right-hand illustration of Figure 16). This forces all crossings
of T to change from horizontal to vertical and vice versa. In particular, the
marked crossing [+1], that was seen as a vertical one in 7', will now look
as a horizontal [—1] in 7’. In fact, this will be the only last horizontal
crossing of 77, since all other crossings of [a;] are now vertical. So, if
T = [la1],[az2], ..., [a,]] then R = [[a; — 1],[a2],...,[a.]] and

T'=[-1L11 —ai},[~azl, ..., [~a.ll.

Note that if the crossings of K were all of negative type, thus all the g;’s would
be negative, the tangle 77 would be T’ = [[+1],[—1 —a1],[—az], ..., [—a.]].
In the example of Figure 15 if we took R = [—2], then T =[-1] + R and
T' =8 = [[+1],[+2]].

The special cut is best illustrated in Figure 17. We consider the rational
knot diagram K = N([+1]+R). (We analyze N([—1]+ R) in the same way.)
As we see here, a sequence of isotopies and cutting K open allow us to read
the new tangle:

1
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open
F e
" to obtain

K = N([+1] +R) = R

FIGURE 17
The tangle of the special cut

From the above we have N([+1]4+R) ~ N([—1] —715). Let now th¢ fractions
of T,R and T' be F(T) = P/Q, F(R) =p/q and F(T') = P'/Q’ respectively.
Then

F(T)=F(+11+R =1+p/qg=(p+q9)/q=P/Q,

while
FI"=F(-11-1/R=—-1—-¢q/p=@+q9/(-p) =P /0.

The two fractions are different, thus the two rational tangles that give rise to
the same rational knot are not isotopic. We observe that P = P and

g=-p mod(p+qg) < O0=0 modP.

This arithmetic equivalence demonstrates another case for Theorem 2. Notice
that, although both the bottom twist and the special cut fall into the same
arithmetic equivalence, the arithmetic of the special cut is more subtle than
the arithmetic of the bottom twist. |

If we cut K at the two lower horizontal points of the first crossing of
[a;] we obtain the same rational tangle 7”. Also, if we cut at any other pair
of upper or lower horizontal adjacent points of the subtangle [a;] we obtain
a rational tangle in twist form isotopic to 7”. Such a cut shall be called a
special cut. See Figure 18 for an example. Finally, we may cut K at any
pair of upper or lower horizontal adjacent points of the subtangle [a,]. We
shall call this a special palindrome cut. We will discuss this case after having
analyzed the last type of a cut, the palindrome cut.
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1234

S AN AN
@" *K’\k"\“?’\\/&/?”\?? -Y

FIGURE 18

A special cut

NOTE. We would like to point out that the horizontal-vertical ambi-
guity of the last crossing of a rational tangle 7 = [[a],...,[a,—1],[ax]l,
which with the special cut on K = N(T) gives rise to the tangle
[[F1],[£1 — a1],[—azl,...,[—a,]], is very similar to the horizontal-vertical
ambiguity of the first crossing that does not change the tangle and it gives
rise to the tangle continued fraction [[ai],...,[a,—1], la, F 1], [£1]].

REMARK 2. A special cut is nothing more than the addition of a bottom
twist. Indeed, as Figure 19 illustrates, applying a positive bottom twist to the
tangle T’ of the special cut yields the tangle S = ([—1] — 1/R) x [+1],
and we find that if F(R) = p/q then F([+1] + R) = (p + gq)/q while
F([-11-1/R*[+1) =1/0+1/(—=1—¢g/p)) = (p+q)/q. Thus we see that
the fractions of 7 = [+1]+R and S = ([—1] — 1/R) « [+1] are equal and by
the Conway Theorem the tangle S is isotopic to the original tangle 7 of the
standard cut. The isotopy move is nothing but the transfer move of Figure 11.
The isotopy is illustrated in Figure 19. Here we used the Flipping Lemma.

k bottom i\ ~ &N
= — < ol ~ N [a]l ~ R
( twist {/ gf
% e
T 77N T=(+11+R

§ = (1} £)+[+1]

FIGURE 19

Special cuts and bottom twists
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THE PALINDROME CUTS. In Figure 20 we see that the tangles

T =1{[2],(3], (411 = 2] +

1
B3]+ &

and

S = [[41, 3], [2]] = [4] +
[[4], 3], [2]] = [4] [3]+ﬁ

both have the same numerator closure. This is another key example of the
basic relationship given in the classification of rational knots.

In the general case if T = [[a;],[az],---,[a,]], we shall call the tangle
S = [lan], lan—1], - .., [a1]] the palindrome of T. Clearly these tangles have
the same numerator: K = N(T) = N(S). Cutting open K to yield T is the
standard cut, while cutting to yield S shall be called the palindrome cut on K.

| )
PG00+ 0552000

T=[2]+ 1/([3] + 1/[4] S=[4]1+1/([3]+1/2])

\7 N(T) = N(S)
RS0

FIGURE 20

An instance of the palindrome equivalence

The tangles in Figure 20 have corresponding fractions

1 30 1 30

= — and F(S) =4 + .

3+1 13 ) 34 % 7

Note that 7-13 = 1 mod 30. This is the other instance of the arithmetic
behind the classification of rational knots in Theorem 2. In order to check the
arithmetic in the general case of the palindrome cut we need to generalize
this pattern to arbitrary continued fractions and their palindromes (obtained

by reversing the order of the terms). Then we have the following

F(T) =2+

THEOREM 4 (Palindrome Theorem). Let {ay,as,...,a,} be a collection of
n non-zero integers, and let g = laj,ay,...,a,] and 2= la,,an_1,...,a1].

Then P =P and QQ = (—1)""' mod P.
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The Palindrome Theorem is a known result about continued fractions.
For example see [35] or [16], p.25, Exercise 2.1.9. We shall give here our
proof of this statement. For this we will first present a way of evaluating
continued fractions via 2 x 2 matrices (compare with [11], [18]). This method
of evaluation is crucially important in our work in the rest of the paper. Let

g- = lap,as,...,a,]. Then we have:

1 g ap+q P
[a17a27°-°>an]:a1+7:al+—: ==
y p p q

Taking the convention that [(4)] := 2, with our usual conventions for formal

fractions such as %,
the form

(Y 0-(4)-6)
M(a) = (1 (1)) .

The matrices M(a;) are said to be the generating matrices for continued
fractions, as we have:

we can thus write a corresponding matrix equation in

We let

LEMMA 1 (Matrix interpretation for continued fractions). For any sequence
of non-zero integers {ai,ay,...,a,} the value of the corresponding continued
fraction is given through the following matrix product

lay, az, ..., a,] = [M(a)M(a) - - - M(ay) - v]

where

and

[M(an—l) <a1n>} = [(an_lzn + 1)] — [an—laan] ;

Now the lemma follows by induction. [
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Proof of the palindrome theorem. We wish to compare —S— = lai,ay,...,a,]
and —Si, = [an,an—1,-..,a1]. By Lemma 1 we can write
P P
0= [M(a)M(ap) - - - M(a,) - v] and 0" [M(a)M(an—1) - - M(ar) - v].
Let
M = M(a1)M(az) - - - M(ay)
and

M = M(a,)M(a,—1)---M(ay) .

Then 5 = [M - v] and P—I, = [M' - v]. We observe that

M" = (M(a)M(az) - - - M(a,))" = (M(an))" (M(a,_1))" - - - (M(a1))"
— M(an)M(an—l) t 'M(al) — M/ y

since M(a;) is symmetric, where M” is the transpose of 7. Thus

M = MT.

(1)

In order that the equations [M - v] = g and [MT -v] = gy are satisfied it is

necessary that X =P, X =P, Z =0 and Y = Q. That is, we should have:

_(P ¢ r_ (P @
M—(Q U) and M_—<Q, U)‘

Furthermore, since the determinant of M(a;) is equal to —1, we have that

Let

det(M) = (—1)".
Thus
PU - Q0 = (-1)",
so that
00 =(-1""' mod P,

and the proof of the Theorem is complete. [
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REMARK 3. Note in the argument above that the entries of the matrix

P O . . . |
M = ( 0 %) of a given continued fraction [aj,as,...,a,] = _g_ involve
also the evaluation of its palindrome [a,,d,—1,...,a1] = _Q’i,_

Returning now to the analysis of the palindrome cut, we apply Theorem 4
in order to evaluate the fraction of palindrome rational tangles 1" = [—B] and

= [Q,] From the above analysis we have P = P'. Also, by our assumption
these tangles have continued fraction forms with odd length n, so we have

the relation
00'=1 modP

and this is the second of the arithmetic relations of Theorem 2.

If we cut K = N(T) at any other pair of ‘vertical’ points of the subtangle
[a,] we obtain a rational tangle in twist form isotopic to the palindrome
tangle S. Any such cut shall be called a palindrome cut.

Having analyzed the arithmetic of the palindrome cuts we can now return
to the special palindrome cuts on the subtangle [a,]. These may be considered
as special cuts on the palindrome tangle S. So, the fraction of the tangle of
such a cut will satisfy the first type of arithmetic relation of Theorem 2
with the fraction of S, namely a relation of the type ¢ = ¢ mod p, which,
consequently, satisfies the second type of arithmetic relation with the fraction
of T, namely a relation of the type ¢g¢ = 1 mod p. In the end a special
palindrome cut will satisfy an arithmetic relation of the second type. This
concludes the arithmetic study of the rational cuts.

@\C\ %%”\ = f@‘“%\w%%

W
- L

e i

Wmmmmm\www R
—

K=N(T)
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FIGURE 21

A non-rational cut

We now claim that the above listing of the three types of rational cuts is
a complete catalog of cuts that can open the link K to a rational tangle: the

standard cuts, the special cuts and the palindrome cuts. This is the crux of
our proof.
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In Figure 21 we illustrate one example of a cut that is not rational. This is
a possible cut made in the middle of the representative diagram N(T'). Here
we see that if 77 is the tangle obtained from this cut, so that N(T') = K, then
D(T") is a connected sum of two non-trivial knots. Hence the denominator
K' = D(T’) is not prime. Since we know that both the numerator and the
denominator of a rational tangle are prime (see [5], p.91 or [19], Chapter 4,
pp. 32-40), it follows that 7" is not a rational tangle. Clearly the above
argument is generic. It is not hard to see by enumeration that all possible
cuts with the exception of the ones we have described will not give rise to
rational tangles. We omit the enumeration of these cases.

This completes the proof that all of the rational tangles that close to a
given standard rational knot diagram are arithmetically equivalent.

) G
1@\3;%\/\’\2\5 gs\,;gmf\g

Standard cuts Special cuts

oL

Palindrome cuts Special palindrome cuts

5 4 331 ne;:;@

FIGURE 22
Standard, special, palindrome and special palindrome cuts

In Figure 22 we illustrate on a representative rational knot in 3-strand-
braid form all the cuts that exhibit that knot as a closure of a rational tangle.
Each pair of points is marked with the same number. ]

REMARK 4. It follows from the above analysis that if 7" is a rational tangle
in twist form, which is isotopic to the standard form [[a1], [az2], . . ., [a.]], then
all arithmetically equivalent rational tangles can arise by any cut of the above
types either on the crossings that add up to the subtangle [a;] or on the
crossings of the subtangle [a,].

3.2 THE FLYPES

Diagrams for knots and links are represented on the surface of the two-
sphere, S, and then notationally on a plane for purposes of illustration.
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Let K = N(T) be a rational link diagram with 7 a rational tangle in
twist form. By an appropriate sequence of flypes (recall Definition 1) we
may assume, without loss of generality, that T is alternating and in continued
fraction form, i.e. T is of the form T = [[a1], [a2],...,[a,]] with the a;’s
all positive or all negative. From the ambiguity of the first crossing of a
rational tangle we may assume that n is odd. Moreover, from the analysis
of the bottom twists in the previous subsection we may assume that 7" is in
reduced form. Then the numerator K = N(T) will be a reduced alternating
knot diagram. This follows from the primality of K.

Let K and K’ be two isotopic, reduced, alternating rational knot diagrams.
By the Tait Conjecture they will differ by a finite sequence of flypes. In
considering how rational knots can be cut open to produce rational tangles,
we will examine how the cuts are affected by flyping. We analyze all possible
flypes to prove that it is sufficient to consider the cuts on a single alternating
reduced diagram for a given rational knot K. Hence the proof will be complete
at that point. We need first two definitions and an observation about flypes.

DEFINITION 3. We shall call region of a flype the part of the knot diagram
that contains precisely the subtangle and the crossing that participate in the
flype. The region of a flype can be enclosed by a simple closed curve on the
plane that intersects the tangle in four points.

FIGURE 23
Decomposing into N([£1] + R)

DEFINITION 4. A pancake flip of a knot diagram in the plane is an
isotopy move that rotates the diagram by 180° in space around a horizontal
or vertical axis on its plane and then it replaces it on the plane. Note that
any knot diagram in $? can be regarded as a knot diagram in a plane.
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In fact, the pancake flip is actually obtained by flypes so long as we allow
as background moves isotopies of the diagram in S?. To see this, note as
in Figure 23 that we can assume without loss of generality that the diagram
in question is of the form N([Z1] + R) for some tangle R not necessarily
rational. (Isolate one crossing at the ‘outer edge’ of the diagram in the plane
and decompose the diagram into this crossing and a complementary tangle,
as shown in Figure 23.) In order to place the diagram in this form we only
need to use isotopies of the diagram in the plane.

S2-isoto y lanar
R p p
R isotopy R
pancake 2 .
J/ flip l/S isotopy
S2- isotopy B flype R
B < <— '
FIGURE 24
Pancake flip

Note now, as in Figure 24, that the pancake flip applied to N([£1] 4+ R)
yields a diagram that can be obtained by a combination of a planar isotopy,
S?-isotopies and a flype. (By an S?-isotopy we mean the sliding of an arc
around the back of the sphere.) This is valid for R any 2-tangle. We will use
this remark in our study of rational knots and links.

We continue with a general remark about the form of a.flype in any
knot or link in S?. View Figure 25. First look at parts A and B of this
figure. Diagram A is shown as a composition of a crossing and two tangles
P and Q. Part B is obtained from a flype of part A, where the flype
is applied to the crossing in conjunction with the tangle P. This is the
general pattern of the application of a flype. The flype is applied to a
composition of a crossing with a tangle, while the rest of the diagram can
be regarded as contained within a second tangle that is left fixed under the
flyping. o
Now look at diagrams C and D. Diagram D is obtained by a flype using
QO and a crossing on diagram C. But diagram C is isotopic by a planar isotopy
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A
P Q 1 flype |
<\\ | —> |
WHMM
I . pancake
planar isotopy flipand | S°- isotopy
Q \/ fiype {
—> |
UMM“”‘I ‘

FIGURE 25
The complementary flype

to diagram A, and diagrams B and D are related by a pancake flip (combined
with an isotopy that swings two arcs around S$?). Thus we see that:

Up to a pancake flip one can choose to keep either of the tangles P or
Q fixed in performing a flype.

Let now K = N(T) and K’ = N(T") be two reduced alternating rational
knot diagrams that differ by a flype. The rational tangles 7 and T are
in reduced alternating twist form and without loss of generality 7" may be
assumed to be in continued fraction form. Then, recall from Section 2 that
the region of the flype on K can either include a rational truncation of T or
some crossings of a subtangle [ag;], see Figure 26. In the first case the two
subtangles into which K decomposes are both rational and each will be called
the complementary tangle of the other. In the second case the flype has really
trivial effect and the complementary tangle is not rational, unless i = 1 or n.

i o o

[J——

\a
L J\“#w )

FIGURE 26
Flypes of rational knots
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- For the cutpoints of T on K = N(T) there are three possibilities :

1. they are outside the region of the flype,

2. they are inside the flyped subtangle,

3. they are inside the region of the flype and outside the flyped subtangle.

If the cutpoints are outside the region of the flype, then the flype is taking
place inside the tangle 7 and so there is nothing to check, since the new
tangle is isotopic and thus arithmetically equivalent to 7.

We concentrate now on the first case of the region of a flype. If the
cutpoints are inside the flyped subtangle then, by Figure 25, this flype can
be seen as a flype of the complementary tangle followed by a pancake flip.
The region of the flype of the complementary tangle does not contain the cut
points, so it is a rational flype that isotopes the tangle to itself. The pancake
flip also does not affect the arithmetic, because its effect on the level of the
tangle T 1is simply a horizontal or a vertical flip, and we know that a flipped
rational tangle is isotopic to itself.

If the region of the flype encircles a number of crossings of some [g]
then the cutpoints cannot lie in the region, unless i = 1 or n. If the cutpoints
do not lie in the region of the flype, there is nothing to check. If they do, then
the complementary tangle is isotopic to 7', and the pancake flip produces an
isotopic tangle.

Finally, if the cutpoints are inside the region of the flype and outside the
flyped subtangle, i.e. they are near the crossing of the flype, then there are
three cases to check. These are illustrated in Figure 27.

(i) ” flype a
Xl = D
(ii) Vol = flype ~
, R _— B N

e flype @
(iii) :X - npe 5

FIGURE 27

Flype and cut interaction

A

In each of these cases the flype is illustrated with respect to a crossing
and a tangle R that is a subtangle of the link K = N(T'). Cases (i) and
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(ii) are taken care of by the trick of the complementary flype. Namely, as in
Figure 25, we transfer the crossing of the flype around S%. Using this crossing
we do a tangle flype of the complementary tangle, then we do a horizontal
pancake flip and finally an S*-isotopy, to end up with the right-hand sides of
Figure 27.

In case (iii) we note that after the flype the position of the cut points is
outside the region of a flyping move that can be performed on the diagram
K' to return to the original diagram K, see Figure 28. This means that
after performing the return flype the tangle T’ is isotopic to the tangle 7.
One can now observe that if the original cut produces a rational tangle, then
the cut after the returned flype also produces a rational tangle, and this is
arithmetically equivalent to the tangle 7. More precisely, the tangle 7" is the
result of a special cut on N(T).

(iii)“\{: flype = »~~ return Va
- R — 15 >\ Me}:}\ R

N(T) N(T") N(T)

FIGURE 28
Flype and special cut

With the above argument we conclude the proof of the main direction of
Theorem 2. From our analysis it follows that:

If K = N(T) is a rational knot diagram with T a rational tangle then, up
to bottom twists, any other rational tangle that closes to this knot is available
as a cut on the given diagram.

We will now show the converse. We wish to show that if two rational
tangles are arithmetically equivalent, then their numerators are isotopic knots.
Let Ty, T, be rational tangles with F(T}) = g and F(T) = 5, with |p| > |q]
and |p| > |¢'|, and assume first g¢' =1 mod p. If ’ql = lai,a,...,a,], with
n odd, and % = [a@n,an—1,...,a1] is the corresponding palindrome continued
fraction, then it follows from the Palindrome Theorem that ¢4’ = 1 mod p.

Furthermore, it follows by induction that in a product of the form
1/
M(a)M(a) - - M(ay) = (’; ! )

we have that p > g and p > ¢’, ¢ > u and ¢” > u whenever
ai,as,...,a, are positive integers. (With the exception in the case of
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M(1) where the first two inequalities are replaced by equalities.) The
induction step involves multiplying a matrix in the above form by one
more matrix M(a), and observing that the inequalities persist in the product
martrix. ‘

Hence, in our discussion we can conclude that |p| > |¢”|. Since |p| > |¢/|
and |p| > |q¢"|, it follows that ¢ = ¢”, since they are both reduced
residue solutions of a mod p equation with a unique solution. Hence
lan, an_1,...,a1] = %, and, by the uniqueness of the canonical form for
rational tangles, 7, has to be:

TZ — [[an]7 [an—-l]a cey [al]]'-

For these tangles we know that N(T}) = N(T,). Let now 75 be another
rational tangle with fraction

p _ 1
q +kp %+k

By the Conway Theorem, this is the fraction of the rational tangle

1 1
1 =1Tp %x —.
‘Tz-i'[k]

Ld

Hence we have (recall the analysis of the bottom twists):

1
N( ) ~ N(T?).
7, + k]
Finally, let F(S;) = %’ and F(S;) = quﬁ. Then
p 1
qg+kp L4k’

which is the fraction of the rational tangle

11
1
§+[k]

—Sl*—.

[£]

Thus
N(S1) ~ N(S2) .

The proof of Theorem 2 is now complete. [
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We close the section with two remarks.

REMARK 5. In the above discussion about flypes we used the fact that
the tangles and flyping tangles involved were rational. One can consider the
question of arbitrary alternating tangles T that close to form links isotopic
to a given alternating diagram K. Our analysis of cuts occurring before and
after a flype goes through to show that for every alternating tangle T, that
closes to a diagram isotopic to a given alternating diagram K, there is a cut
on the diagram K that produces a tangle that is arithmetically equivalent to
T. Thus it makes sense to consider the collection of tangles that close to an
arbitrary alternating link up to this arithmetic equivalence. In the general case
of alternating links this shows that on a given diagram of the alternating link
we can consider all cuts that produce alternating tangles and thereby obtain
all such tangles, up to a certain arithmetical equivalence, that close to links
1sotopic to K.

Even for rational links there can be more than one equivalence class
of such tangles. For example, N(1/[3] + 1/[3]) = N([—6]) and F(1/[3] +
1/[3]) = 2/3 while F([—6]) = —6. Since these fractions have different
numerators their tangles (one of which is not rational) lie in different
equivalence classes. These remarks lead us to consider the set of arithmetical
equivalence classes of altenating tangles that close to a given alternating
link and to search for an analogue of Schubert’s Theorem in this general
setting.

REMARK 6. DNA supercoils, replicates and recombines with the help
of certain enzymes. Sife-specific recombination is one of the ways nature
alters the genetic code of an organism, either by moving a block of DNA
to another position on the molecule or by integrating a block of alien DNA
into a host genome. In [7] it was made possible for the first time to see
knotted DNA in an electron micrograph with sufficient resolution to actually
identify the topological type of these knots and links. It was possible to design
an experiment involving successive DNA recombinations and to examine the
topology of the products. In [7] the knotted DNA produced by such successive
recombinations was consistent with the hypothesis that all recombinations were
of the type of a positive half twist as in [+1]. Then D.W. Sumners and
C. Ernst [9] proposed a tangle model for successive DNA recombinations and
showed, in the case of the experiments in question, that there was no other
topological possibility for the recombination mechanism than the positive half
twist [+1]. Their work depends essentially on the classification theorem for
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rational knots. This constitutes a unique use of topological mathematics as a
theoretical underpinning for a problem in molecular biology.

4. RATIONAL KNOTS AND THEIR MIRROR IMAGES

In this section we give an application of Theorem 2. An unoriented knot
or link K 1is said to be achiral if it is topologically equivalent to its mirror
image —K. If a link is not equivalent to its mirror image then it is said
be chiral. One then can speak of the chirality of a given knot or link,
meaning whether it is chiral or achiral. Chirality plays an important role in
the applications of knot theory to chemistry and molecular biology. In [8] the
authors find an explicit formula for the number of achiral rational knots among
all rational knots with n crossings. It is interesting to use the classification
of rational knots and links to determine their chirality. Indeed, we have the
following well-known result (for example see [35] and [16], p.24, Exercise
2.1.4; compare also with [31]):

THEOREM 5. Let K = N(T) be an unoriented rational knot or link,
presented as the numerator of a rational tangle T. Suppose that F(T) =
p/q with p and q relatively prime. Then K is achiral if and only if
g¢> = —1 mod p. It follows that the tangle T has to be of the form

[[al]a[aZ]a"'7[ak]7[ak]a'“;[aQ]a[al]] fO}" any im‘egers agy ..., k.

Note that in this description we are using a representation of the tangle
with an even number of terms. The leftmost twists [a;] are horizontal, thus
lp| > |g|. The rightmost starting twists are then vertical.

Proof. With —T the mirror image of the tangle 7, we have that
—~K =N(-T) and F(-T) =p/(—q). If K is isotopic to —K, it follows from
the classification theorem for rational knots that either g(—g) =1 mod p or
g = —q mod p. Without loss of generality we can assume that 0 < g < p.
Hence 2qg is not divisible by p and therefore it is not the case that g = —¢q
mod p. Hence g*> = —1 mod p.

Conversely, if ¢> = —1 mod p, then it follows from the Palindrome
Theorem that the continued fraction expansion of p/q has to be palindromic
with an even number of terms. To see this, let p/q = [c1,...,¢c,] with n
even, and let p'/q’ = [cy,...,c1]. The Palindrome theorem tells us that
p’ = p and that ¢’ = —1 mod p. Thus we have that both g and ¢ satisfy
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the equation gx = —1 mod p and both ¢ and g are between 1 and p — 1.
Since this equation has a unique solution in this range, we conclude that
g = ¢q'. It follows at once that the continued fraction sequence for p/q is

symmetric.

™1 80 rotatlon

Q\?\ ”"””“)

FIGURE 29

An achiral rational link

It is then easy to see that the corresponding rational knot or link K = N(T)
is equivalent to its mirror image. One rotates K by 180° in the plane and
swings an arc, as Figure 29 illustrates. The point is that the crossings of the
second row of the tangle T, that are seemingly crossings of opposite type
than the crossings of the upper row, become after the turn crossings of the
upper row, and so the types of crossings are switched. This completes the
proof. [

5. ON CONNECTIVITY

We shall now introduce the notion of connectivity and we shall relate it
to the fraction of unoriented rational tangles. We shall say that an unoriented
rational tangle has connectivity type [0] if the NW end arc is connected to
the NE end arc and the SW end arc is connected to the SE end arc. These are
the same connections as in the tangle [0]. Similarly, we say that the tangle
has connectivity type [oo] or [1] if the end arc connections are the same as
in the tangles [oo] and [41] (or equivalently [—1]) respectively. The basic
connectivity patterns of rational tangles are exemplified by the tangles [0],
[cc] and [+41]. We can represent them iconically by

[0] = =
[c0] = ><
[1] = x
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For connectivity we are only concerned with the connection patterns of the four
end arcs. Thus [#] has connectivity x whenever n is odd, and connectivity
= whenever n is even.

Note that connectivity type [0] yields two-component rational links, whilst
type [1] or [oco] yields one-component rational links. Also, adding a bottom
twist to a rational tangle of connectivity type [0] will not change the
connectivity type of the tangle, while adding a bottom twist to a rational
tangle of connectivity type [oo] will switch the connectivity type to [1] and
vice versa.

We need to keep an accounting of the connectivity of rational tangles in
relation to the parity of the numerators and denominators of their fractions.
We adopt the following notation: e stands for even and o for odd. The
parity of a fraction p/q is defined to be the ratio of the parities (e or
o) of its numerator and denominator p and ¢. Thus the fraction 2/3 is
of parity e/o. The tangle [0] has fraction O = 0/1, thus parity e/o.
The tangle [oo] has formal fraction oo = 1/0, thus parity o/e. The
tangle [+1] has fraction 1 = 1/1, thus parity o/o, and the tangle [—1]
has fraction —1 = —1/1, thus parity o/o. We then have the following
result.

THEOREM 6. A rational tangle T has connectivity type < if and only if
its fraction has parity e/o. T has connectivity type >< if and only if its
fraction has parity o/e. Finally, T has connectivity type x if and only if its
fraction has parity o/o.

Proof. Since F([0]) = 0/1, F([£1]) = £1/1 and F([oco]) = 1/0, the
theorem is true for these elementary tangles. It remains to show by induction
that it is true for any rational tangle 7. Note how connectivity, type behaves
under the addition and product of tangles:

X

X+ X

X+ =
=+ <
X+ ><=><

X4 >< = >< .

S<+><=><><=0><

I
>0

)(
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The symbol & stands for the value of a loop formed. Now any rational
tangle can be built from [0] or [co] by successive addition or multiplication
with [£1]. Thus, from the point of view of connectivity, it suffices to show
that [71+[£1] and [T]=*[=£1] satisfy the theorem whenever [T] satisfies the
theorem. This is checked by comparing the connectivity identities above with
the parity of the fractions. For example, in the case

X +x == we have o/o+o0/o=¢e/o

exactly in accordance with the connectivity identity. The other cases correspond
as well, and this proves the theorem by induction. [

COROLLARY 1. For a rational tangle T the link N(T) has two components
if and only if T has fraction F(T) of parity e/o.

Proof. By the Theorem we have F(T) has parity e/o if and only if T has
connectivity type <. It follows at once that N(7) has two components. []

Another useful fact is that the components of a rational link are individually
unknotted embeddings in three dimensional space. To see this, observe that
upon removing one strand of a rational tangle, the other strand is an unknotted
arc.

6. THE ORIENTED CASE

Oriented rational knots and links are numerator (and denominator) closures
of oriented rational tangles. Rational tangles are oriented by choosing an
orientation for each strand of the tangle. Two oriented rational tangles are
isotopic if they are isotopic as unoriented tangles via an isotopy that carries the
orientation of one tangle to the orientation of the other. Since the end arcs of a
tangle are fixed during a tangle isotopy, this means that isotopic tangles must
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have identical orientations at their end arcs. Thus, two oriented tangles are
isotopic if and only if they are isotopic as unoriented tangles and they have
identical orientations at their end arcs. It follows that a given unoriented
rational tangle can always yield non-isotopic oriented rational tangles, for
different choices of orientation of one or both strands.

In order to compare oriented rational knots via rational tangles we are only
interested in orientations that yield consistently oriented knots upon taking the
numerator closure. This means that the two top end arcs have to be oriented
one inward and the other outward. Same for the two bottom end arcs.

Reversing the orientation of one strand of an oriented rational tangle that
gives rise to a two-component link will usually yield non-isotopic oriented
rational links. Figure 30 illustrates an example of non-isotopic oriented rational
links, which are isotopic as unoriented links. But reversing a single strand
may also yield isotopic oriented rational links. This will be the subject of the
next section.

close

e

FIGURE 30
Non-isotopic oriented rational links

An oriented knot or link is said to be invertible if it is oriented isotopic
to its inverse, i.e. the link obtained from it by reversing the orientation of
each component. We can obtain the inverse of a rational link by reversing the
orientation of both strands of the oriented rational tangle of which it is the
numerator. It is easy to see that any rational knot or link is invertible. See
the example on the right-hand side of Figure 31.

FIGURE 31
Isotopic oriented rational knots and links

il
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LEMMA 2. Rational knots and links are invertible.

Proof. Let K = N(T) be an oriented rational knot or link with 7 an
oriented rational tangle. We do a vertical 180°-rotation in space, as the left-
hand side of Figure 31 demonstrates. This rotation is a vertical flip for the
rational tangle 7. Let T’ denote the result of the vertical flip of the tangle 7.
The resulting oriented knot K’ = N(T') is oriented isotopic to K, while the
orientation of 7" is the opposite of that of 7' on both strands, and thus on
all end arcs. But as we have already noted T is isotopic to its vertical flip as
unoriented tangles, thus they will have the same fraction. It follows that T’
can be isotoped to T through an (unoriented) isotopy that leaves the external
strands fixed. Therefore, the result of the vertical 180°-rotation is the tangle
T but with all orientations reversed. Thus K’ is the inverse of K, and from
the above K is oriented isotopic to its inverse. [

Using this observation we conclude that, as far as the study of oriented
rational knots is concerned, all oriented rational tangles may be assumed
to have the same orientation for their two upper end arcs. Indeed, if the
orientations of the two upper end arcs are opposite of the fixed ones we do a
vertical flip to obtain the orientation pattern that agrees with our convention.
We fix this orientation to be downward for the NW end arc and upward for the
NE end arc, as in the examples of Figure 30 and as illustrated in Figure 32.

4 bottom T
T o
twist
&
T [+1]
Type | Type II /
/]\ Incompatible T
Compatible

FIGURE 32

Compatible and incompatible orientations

Thus we may reduce our analysis to two basic types of orientation for the
four end arcs of a rational tangle. We shall call an oriented rational tangle of
type I if the SW arc is oriented downward and the SE arc is oriented upward,
and of type II if the SW arc is oriented upward and the SE arc is oriented
downward, see Figure 32. From the above remarks any tangle is of type I or
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type II. Two tangles are said to be compatible it they are both of type I or
both of type II and incompatible if they are of different types.

In order to classify oriented rational knots, seen as numerator closures of
oriented rational tangles, we will always compare compatible rational tangles.

While the connectivity type of unoriented rational tangles may be [0], [oo]
or [1], note that an oriented rational tangle of type I will have connectivity type
[0] or [co] and an oriented rational tangle of type II will have connectivity

type [0] or [1].

BOTTOM TWIST BASICS. If two oriented tangles are incompatible, adding
a single half twist at the bottom of one of them yields a new pair of
compatible tangles, as Figure 32 illustrates. Note also that adding such a
twist, although it changes the tangle, does not change the isotopy type
of the numerator closure. Thus, up to bottom twists, we are always able
to compare oriented rational tangles of the same orientation type. Further,
note that if we add a positive bottom twist to an oriented rational tangle T
with fraction F(T) = p/q we obtain the incompatible tangle 77 = T * [+1]
with fraction F(T") = 1/(1 + 1/F(T)) = p/(p + ¢). Similarly, if we add a
negative twist we obtain the incompatible tangle 7" = T« [—1] with fraction
F(T"y = 1/(-1 4+ 1/F(T)) = p/(—p + g). It is worth noting here that the
tangles 7/ and T" are compatible and p+¢g = (—p+¢) mod 2p, confirming
the Oriented Schubert Theorem.

Schubert [31] proved his version of Theorem 3 by using the 2-bridge
representation of rational knots and links. We give a tangle-theoretic proof of
Schubert’s Oriented Theorem, based upon the combinatorics of the unoriented
case and then analyzing how orientations and fractions are related.

In our statement of Theorem 3 in the introduction we restricted the
denominators of the fractions to be odd. This is a restriction made for the
purpose of comparison of tangles. There is no loss of generality, as will be
seen when we analyze the palindrome case in the proof at the end of this
section. What happens is this: In the case of p odd and only one of ¢ and ¢
even, one finds that the corresponding tangles are incompatible. We can then
compare them by adding a bottom twist to one of the tangles. Adding this
twist, the even denominator is replaced by an odd denominator. In the case
where p is odd and both ¢ and ¢’ are even, one finds that the corresponding
tangles are compatible. In this case, we add a twist at the bottom of each
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tangle to preserve the hypothesis that both denominators are odd. This extra
twisting yields compatible tangles and a successful comparison.

The strategy of our proof is as follows. Consider an oriented rational knot
or link diagram K given in standard form as N(T), where T is a rational tangle
in continued fraction form. Our previous analysis tells us that, up to bottom
twists, any other rational tangle that closes to this knot is available as a cut
on the given diagram. If two rational tangles close to give K as an unoriented
rational knot or link, then there are orientations on these tangles, induced from
K, so that the oriented tangles close to give K as an oriented knot or link.
Two tangles so produced may or may not be compatible. However, adding
a bottom twist to one of two incompatible tangles results in two compatible
tangles. It is this possible twist difference that gives rise to the change from
modulus p in the unoriented case to the modulus 2p in the oriented case.

We now analyze when, comparing with the original standard cut, another
cut produces a compatible or incompatible tangle. See Figure 34 for an example
illustrating the compatibility of orientations in the case of the palindrome cut.
Note that reducing all possible bottom twists implies |p| > |g| for both
tangles, if the two reduced tangles that we compare each time are compatible,
or for only one, if they are incompatible. Recall Figure 12 and the related
analysis for the basic arithmetic of the bottom twists.

EVEN BOTTOM TWISTS. The simplest instance of the classification of
oriented rational knots is adding an even number of twists at the bottom of
an oriented rational tangle 7'. We then obtain a compatible tangle 7 x1/[2n],
and N(T * 1/[2n]) ~ N(T). If now F(T) = p/q, then F(T % 1/[2n]) =
F(1/([2n] + 1/T)) = 1/2n 4+ 1/F(T)) = p/(2np + q). Hence, if we set
2np+q =4 we have

g=¢q mod2p),

just as Theorem 3 predicts.

We then have to compare the special cut and the palindrome cut with
the standard cut. Here also, the special cut is the easier to see whilst the
palindrome cut requires a more sophisticated analysis. Figure 17 explained
how to obtain the unoriented tangle of the special cut. Moreover, by Remark 2,
adding a bottom twist to the tangle of the special cut yields a tangle isotopic
to the tangle of the standard cut.

Figure 33 demonstrates that the special cut yields oriented incompatible
tangles. More precisely, in the case of the special cut we are presented with
the general fact that for any tangle R, N([+1] + R) and N([-1] — 1/R)
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uy)
Q ~ jj ~
N(1]+R) N(-1]- ) N(-1] - )« F+1)

1
R
Isotopic oriented tangles/l\

T T Isotopic oriented knots/r

FIGURE 33

The oriented special cut yields incompatible tangles

are unoriented isotopic. With orientations coming from the cut we find that
S = [+1]4+R and &' = [—1] — I/R are incompatible. Adding a bottom
twist yields oriented compatible tangles, which from the above are isotopic.
So, there is nothing to check and the Oriented Schubert Theorem is verified
in the strongest possible way for the oriented special cut.

SN T‘
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FIGURE 34

Oriented standard cut and palindrome cut

We are left to examine the case of the palindrome cut. In order to analyze
this case, we must understand when the standard cut and the palindrome cut are
compatible or incompatible. Then we must compare their respective fractions.
Figure 34 illustrates how compatibility is obtained by using a bottom twist,
in the case of a palindrome cut. In this example we illustrate the standard
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and palindrome cuts on the oriented rational knot K = N(T) = N(T') where
T = [[2],[1]1,[2]] and T' its palindrome. As we can see, the two cuts place
incompatible orientations on the tangles 7 and T . Adding a twist at the
bottom of T’ produces a tangle 7 = T’ x [—1] that is compatible with T.
Now we compute F(T) = F(T') = 8/3 and F(T") = F(T' «[-1)) =8/ -5
and we notice that 3-(=5) =1 mod 16, as Theorem 3 predicts.
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FIGURE 35

The six connection structures, compatibility and parity of the palindrome cut

The study of the compatibility or not of the palindrome cut involves a
deeper analysis along the lines of Theorem 6. With the issues of connectivity
in place we can begin to analyze the different connectivities and parities
in the standard and palindrome cuts on a rational knot or link in standard
3 -strand-braid representation. See Figure 35. In this figure we have enumerated
the six connection structures for a 3-strand braid (corresponding to the six
permutations of three points) with plat closures (of the braid augmented by
an extra strand) corresponding to oriented rational knots and links. These
closed connection patterns shall be called connectivity charts. We then show
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corresponding to each connectivity chart the related standard and palindrome
cuts and the connectivity and parity of the corresponding tangles. Compatibility
or incompatibility of these tangles, specified by an ‘i’ or ‘c’, can be read from
the oriented diagrams in the figure.

Proof of the palindrome cut. It suffices to verify the Theorem in all cases
of the comparison of standard and palindrome cuts on a rational knot K in
continued fraction form. We can assume that K = N([[a1], ..., [a,]]) with n
odd. Then the tangle T = [[a1], ..., [a,]] is, by construction, the standard cut
on K. We know that the matrix product

M = M(a))M(ay) - - - M(ay) = (” q)
q u

encodes the fractions of 7 and its palindrome T' = [[a,],...,[a(]], with
F(T) =p/q and F(T') = p/q'. Note that, since Det(M) = —1, we have the
formula

qq =1+up

relating the denominators of these fractions.

CASE 1. p ODD, PART A:

If only one of q or ¢ is even (parts 1 and 3 of Figure 35), then the
fact that g4 = 1 + up implies the parity equation ¢ = 1 + uo, hence u
is odd. Now refer to Figure 35 and note that the standard and palindrome
cuts are incompatible in both cases 1 and 3. (The cases are {o/e,0/0} and
{o/o,0/e}.) In order to obtain compatibility, add a bottom twist to the cut
with even denominator. Without loss of generality, we may assume that ¢ is
even, so that we will compare p/q and p/(p + ¢'). Note that

qp+4q)=qp+q9qd =qp+1+up=1+@+qg)p:

Since u is odd and ¢ is odd, it follows that (u+¢) is even. Hence, g(p+¢) = 1
mod 2p, proving Theorem 3 in this case.

CASE 1. p oDD, PART B:

Now suppose that both g and ¢ are even. We are in part 4 of Figure 35
and the two cuts are compatible. Therefore we apply a bottom twist to each
cut giving the fractions p/(p + ¢) and p/(p + ¢') for comparison. Note that

P+p+d)=p*+qp+dp+ad =1+@+q+q +uwp
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and we have the parity equation
pt+g+qg t+tu=o+eteto=ce.

Hence (p + q)(p+¢') =1 mod 2p verifying the Theorem in this case.

CASE 1. p oDD, PART C:

Finally (for Case 1) suppose that g and ¢ are both odd. Then the parity
equation corresponding to ¢g¢ =14 up is

o=1+uo.

Hence u is even so that g¢' = 1 mod 2p. We are in part 2 of Figure 35,
and the standard and palindrome cuts are compatible. This is in accord with
the congruence above, hence the Theorem is verified in this case.

CASE 2. p EVEN:

Now we assume that p is even. This corresponds to parts 5 and 6 in
Figure 35 (two components). In part 5 the cuts are compatible, while in part 6
the cuts are incompatible. In either case, both ¢ and ¢ are odd so that the
fractions p/q and p/q’ both have the parity e/o. The equation g4 = 1+ up
has corresponding parity equation o = 1 + ue, and u can be either even or
odd. In order to accomplish the proof of Case 2 we will show that

1. u is even if and only if the standard and palindrome cuts are compatible.

2. u is odd if and only if the standard and palindrome cuts are incompatible.

We prove these statements by induction on the number of terms in the
continued fraction [ay,...,a,]. The induction step consists in adding two
more terms to the continued fraction (thereby maintaining an odd number
of terms). That is, we shall examine a continued fraction in the form

Tyi2 = lay,...,an+2] that is given to be in cases 5 or 6 of Figure 35. See
Figure 36. In Figure 36 the numbers that label the diagrams refer to the cases
in Figure 35. We consider the structure of the “predecessor” T, = [ay, ..., a,]

of T,+» which may be in the form 5 or 6, as shown in Figure 36 (in which
case we can apply the induction hypothesis) or it may be in one of the other
four cases shown in Figure 36.

In Figure 36 we have shown the connectivity patterns that result in 7,4,
landing in cases 5 or 6. In this figure the rectangular boxes indicate the internal
connectivity of T,, and we have separated these specific cases into three types
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G—) G- ﬁ

- s TR =
{

or

connection

possibilities: Q QO

50r6 50r6

FIGURE 36

Inductive connections

labeled A, B and C (not to be confused with subcases of this proof). In this
figure each case is labeled with the type of the predecessor. Thus in the A
row one sees the labels 3 and 4 because the boxed patterns are respectively
of types 3 and 4. In rows A and B the left hand entries are of type 6 after
the addition of the two new terms, and the right hand entries are of type 5.
We then check each of these cases to see that the induced value of u in
T,+, has the right parity. The calculations can be done by multiplication of
generating matrices for continued fractions just using the parity algebra. For
example, in Case A of Figure 36 we add two new odd parity terms to 7,
in order to obtain 7,4,. Thus we multiply the parity matrix for 7, by the

product
o 1\ (o 1\ (e o
1 0/\1 0/ \o 1

in order to obtain the parity matrix for 7,4,.

In particular, if 7, is in case 3 of Figure 35, then it has fraction parities

0/o and o/e and hence parity matrix (Z Z) . Multiplying this by (Z ?) ;
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o e\ (e o\ (e o
(0 0><0 1)_(0 e>'

Thus the new u for 7,4, is even. Since the connectivity diagram for 7,4, in
this case, as shown in Figure 36, has compatible standard and palindrome cuts,
this result for the parity of u is one step in the verification of the induction
hypothesis. Each of the six cases is handled in this same way. We omit the
remaining details and assert that the values of u obtained in each case are
correct with respect to the connection structure. This completes the proof of
Case 2.

Since Cases 1 and 2 encompass all the different possibilities for the
standard and palindrome cuts, this completes the proof of the Oriented Schubert
Theorem. [

we obtain

7. STRONGLY INVERTIBLE LINKS

An oriented knot or link is invertible if it is oriented isotopic to the
link obtained from it by reversing the orientation of each component. We
have seen (Lemma 2) that rational knots and links are invertible. A link
L of two components is said to be strongly invertible if L is ambient
isotopic to itself with the orientation of only one component reversed. In
Figure 37 we illustrate the link L = N([[2],[1],[2]]). This is a strongly
invertible link as is apparent by a 180° vertical rotation. This link is well-
known as the Whitehead link, a link with linking number zero. Note that
since [[2],[1],[2]] has fraction equal to 2+ 1/(1 + 1/2) = 8/3 this link is
non-trivial via the classification of rational knots and links. Note also that
3-3=1+41-8.

N([2], [1], [2]) =W

the Whitehead Link
F(W) =2+1/(1+1/2) = 8/3
3:3=1+1-8

FIGURE 37
The Whitehead link is strongly invertible
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In general we have the following

THEOREM 7. Let L = N(T) be an oriented rational link with associated
tangle fraction F(T) = p/q of parity e/o, with p and q relatively prime
and |p| > |q|. Then L is strongly invertible if and only if ¢ =1+ up with
u an odd integer. It follows that strongly invertible links are all numerators

of rational tangles of the form [[ai], [az], ..., [acl, [a], [acl, . .., [az2], [a1]] for
any integers daj, ..., d, Q..

7

Proof. In T the upper two end arcs close to form one component of L
and the lower two end arcs close to form the other component of L. Let
T' denote the tangle obtained from the oriented tangle T by reversing the
orientation of the component containing the lower two arcs and let N(T') = L'.
(If T" denotes the tangle obtained from the oriented tangle T by reversing
the orientation of the component containing the upper two arcs we have seen
that by a vertical 180° rotation the link N(T") is isotopic to the link N(7").
So, for proving Theorem 7 it suffices to consider only the case above.)

Note that 7 and 7’ are incompatible. Thus to apply Theorem 3 we need
to perform a bottom twist on 7’. Since T and 7’ have the same fraction
p/q, after applying the twist we need to compare the fractions p/g and
p/(p + q). Since g is not congruent to (p + ¢g) modulo 2p, we need to
determine when ¢(p + g) is congruent to 1 modulo 2p. This will happen
exactly when gp+¢*> = 1 +2Kp for some integer K. The last equation is the
same as saying that ¢> = 1 +up with u = 2K —¢ odd, since ¢ is odd. Now it
follows from the Palindrome Theorem for continued fractions that ¢ = 1 4+up
with u odd and p even if and only if the fraction p/q with |p| > |g| has a
palindromic continued fraction expansion with an odd number of terms (the
proof is the same in form as the corresponding argument given in the proof
of Theorem 5). That is, it has a continued fraction in the form

lai,ay,...,4,, Q, 4y, y_1,...,00,041].

It is then easy to see that the corresponding rational link is ambient isotopic
to itself through a vertical 180° rotation. Hence it is strongly invertible. It
follows from this that all strongly invertible rational links are ambient isotopic
to themselves through a 180° rotation just as in the example of the Whitehead
link given above. This completes the proof of the Theorem. [

REMARK 7. Excluding the possibility 7 = [oco], as F(T) = 1/0 does not
have the parity e/o, we may assume ¢ # 0. And since ¢ is odd (in order
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that the rational tangle has two components), the integer u = 2K — g in the
equation ¢> = 1 + up cannot be zero. It follows then that the links of the
type N([2n]), for n € Z, n # 0, with tangle fraction 2n/1 are not invertible
(recall the example'in Figure 30). Note that, for n =0 we have T = [0] and
F(T) = 0/1, and in this case Theorem 7 is confirmed, since 12 =1+ u0,
for any u odd. See Figure 38 for another example of a strongly invertible
link. In this case the link is L = N([[3],[11,[11,[11,[3]]) with F(L) =40/11.

Note that 11> = 1 + 3 - 40, fitting the conclusion of Theorem 7.

L = N({3], [11, [1], (11, [3]])

FIGURE 38

An example of a strongly invertible link
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