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§6. Mean curvature

Let I be a closed rc-dimensional manifold with a Riemannian metric g.
Suppose that iterated graphs Tk C Xk are smooth of dimension n. Denote by

Cu(7), 7 G ri, the absolute value of the mean curvature of Tk at 7. Set

I lomeQ T lim sup \ log 1 + f [Cu(j)]nd^y)
i 00 k V Jn J

j When Yk are minimal and lome^ 0 we know that h < "lov".
j More generally,

j (6.0) h(7) < lov T + lomep T.

j Proof Despite the possible dependence of "lome" upon the choice of g,
we can proceed as before and reduce (6.0) to the following local estimate :

Take V in the Euclidean space Ri==kn and suppose its boundary does not
intersect the ball #2e centered at vo G V. Then

(6.1) e'n Vol y + [ Cun(v)dv > Cxf2,
I Jv

where C\ and C2 are constants depending only on n.
j To prove (6.1) we consider the normal bundle N of V and its canonical

map F into R^. The Jacobian J of F at a point v + vt (where v G V, and
j v is the unit vector at v normal to V) is equal to YYi=iO + kLt), where kt

are the principal curvatures in the direction v.
] If the distance from v+vt to V is equal to t, then 1+kjt >0, i 1,..., h,
I and so

(6.2) J <An(\ +tnCu!\v))

; Now we observe that every point of the ball Be can be joined by a shortest
j normal with V and so

Qee Vol B<AnCe-nee-n(l + dv,

j where Q and Q_n are volumes of unit balls in Re and R£~n. The last
I inequality implies (6.1) and so (6.0) is proved.

The inequality (6.2) was extended by Karcher and Heinze to general
Riemannian manifolds. Discussions with Karcher about such inequalities
influenced my reasoning in this section.
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