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I. CHATTERJI AND G. MISLIN

3. Hilbert modules

Recall that for H < G and X an //-space, the induced G-space is

G xHX (G xX)/H

where H acts on G x X via h • (g,x) (gh~l,hx) and the left G-action on
G xHX is given by g • [k,x] — [gk,x] (where [k,x] denotes the class of the

pair (k,x) G G x X in G xHX). For A Ç £2(H)n a Hilbert //-module one
defines Ind#(A), the induced Hilbert G-module, as follows:

Indg(A) |/: G^A, f(gh)-h~'/(<?), £ ||/(-y)||2 < oo|
^

7G/H
-1

On Ind#(A) the action of G is given as follows :

(7 '/)(/") =/(7_1M), 7, M 6 G and Indg(A).

For M an //-free, cocompact Riemannian manifold and Z) an //-equivariant
pseudo-differential operator on M, one can express the lift D of D to

M G xH M as follows. Fix a set R of representatives for G/H and write
7r: M -a M for the projection; a section s G C^°(M,tt*E) is a collection

^ {"SVjVeR 5

where Jr G C^°(M, £) is the zero section for all but finitely many r's, and

is([<7, m]) !r(hm), if [r, /zra] [g, m] G G xH M. Now the lift D of /> to

M G xH M satisfies

LEMMA 3.1. M be a closed Riemannian manifold, D a pseudo-

differential operator on M and M a regular cover of M with countable

transformation group H. Consider an inclusion H < G and form the regular

cover M G xH M of M. Then for the lifts D of D to M and D of D
to M,

Index#(D) IndexG(£)) •

Proof It is enough to see that Sß Ind#(S~). Indeed, it is well-known

(see [9]) that for a Hilbert //-module A one has

dim„(A) dimG(Indg(A)).
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For R a fixed set of representatives for G/H, the map

<pR-. Ind h(.S~)^

f^{mrR
is well-defined by H -equivariance of the elements of S~ and one checks

that it defines a G-equivariant isometric bijection. Similarly for the adjoint

operators.

The following example is a particular case of the previous lemma.

Example 3.2. Let us look at the case M M x G. A section

7 G C^°(M,7t*E) is an element {sg}gec where sg G C°°(M,E) and

sg 0 for all but finitely many g9s. Note that L2(M, 7r*£) can be identified

with f(G) 0 L2(M, £). Now

5^ G C?{MXF)

and hence S~ may be identified with £2(G) 0 SD £2(G)d, where

d dime (So)- In this identification the projection P onto S~ becomes the

identity in Md(N'(G)) and thus

d

dimG0%) ^ (e, e) <i dimc^o).
1=1

A similar argument for D* shows that in this case not only does the L2 -Index

of D coincide with the Index of D, but also the individual terms of the

difference correspond to each other. This is not the case in general, see

Example 2.2.

4. On -homology

Many ideas of this section go back to the seminal article by Baum and
Connes [3], which has been circulating for many years and has only recently
been published.

An elliptic pseudo-differential operator D on the closed manifold M can
also be used to define an element [D] G K0(M), the K-homology of Af,
and according to Baum and Douglas [4], all elements of K0(M) are of
the form [D]. The index defined in Section 2 extends to a well-defined


	3. Hilbert modules

