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DEFINITION 13.1 ([19], [3]). An injective endomorphism o of the rank
n free group F, is hyperbolic if there exist A, > 1 and j, > O such that
for any w € F,, either \,|w| < \o/a (w)) or w admits a preimage a e (w)
such that Ao|w| < | =(w)|, where | .| denotes the usual word-metric.

We recall that a subgroup H in a group G is malnormal if w™'HwNH = {1}
for any element w ¢ H of G. We state our theorem about mapping-torus
groups as follows:

THEOREM 13.2. Let o be an injective hyperbolic endomorphism of the
rank n free group F,. If the image of « is a malnormal subgroup of F, then
the mapping-torus group G, = <x1, e Xyt Tt =alx), i=1,... ,n> IS
a hyperbolic group.

13.1 RELATIONSHIPS WITH MAPPING-TELESCOPES

We consider the rank n free group F, = (xi,...,x,). Let a be an injective
endomorphism of F,. Let G, = <x1, Xt Uit =alx), i=1,... ,n>
be the mapping-torus group of («,F,). We consider the Cayley graph I'
associated to the given system of generators. Let /[ be a loop in I' whose
associated word in the edges of I' reads a relation z“lxl-toz(x,-)—l . We attach a
2-cell by its boundary circle along any such loop /. The resulting topological
space is a 2-complex. This i1s the Cayley complex of the mapping-torus group
G, for the given presentation.

Let us check that the above Cayley complex is a mapping-telescope of
a forest-map. We consider the rose R, with n petals. We label each edge
by a generator x; of F,. We denote by v the simplicial map on R, such
that 1(x;) 1s a locally injective path whose associated word in the edges of
R, reads a(x;). Let us denote by 7T the universal covering of R, (T is
a tree) and by m: T — R, the associated covering-map. We denote by
@Z : T — T a simplicial lift of ¢ to T, that is = qu = 1Y om. We consider the
mapping-torus of (¢, R,), i.e. the 2-complex R, x [0,1]/(x,1) ~ ((x),0).
Then the universal covering of this mapping-torus is the mapping-telescope
of w F — F, where F and w are defined as follows:

e We denote by I the set of integers from 1 to Card(F,/Im(c)).
The different classes are written w;Im(a), i = 0,1,.... We denote by
v: I — {wo,wi,...} the bijection. Then the connected components of F
are in bijection with N’ Each connected component is the image, by a
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bijection p, of a sequence of Card(l) integers. Each connected component
p(xo, x1,...) of F is homeomorphic to T via By, x,..): pxo,x1,...) = T.

e We define the restriction of 1; to any connected component u((xp, X1, - - -))
as follows:

If Card(l) < +o00 then

/J'((x07x17 v )) — /'L((E[Card(l)] X1y ))
X — (7(])/8()60,)51,,,_ )¢ﬁ(xo,x1,... ))(x)
] = kCard(I) 4.

Yo, ) : {

where j < Card(l) satisfies El= 375
If Card(/) = +oc0o then

p((xo, X1,...))  — p((xr, %2, . .2))

JIN’((X % 7)): -1 s
o X —_> (’Y(XO)ﬂ(xO,xl’_”)¢ﬂ(XO,X1,...))(x)'

The mapping-torus of (¥, R,) is a 2-complex whose 1-skeleton is
the rose with n + 1 petals in bijection with {xi,...,x,,¢}. There is
one 2-cell for each relation t“lxl-toz(xi)_]. Thus the universal covering
described above is the Cayley complex for G, with the presentation

= (X1,..., %, 0 7't = alx;), i=1,...,n). We have thus proved
LEMMA 13.3. Let o be an injective endomorphism of F, = (x1,...,X,).
Let G, = <x1, e Xyt Tt =alx), i=1,. .. ,n> be the mapping-torus

group of a.. Let C(Gy,) be the Cayley complex of G, for the given presentation.
Then C(G,) is the mapping-telescope of a forest-map.

REMARK 13.4. If the endomorphism « is an automorphism then the
above Cayley complex is the mapping-telescope of a tree-map. The tree is
the universal covering of the rose with n petals. If the endomorphism « is
not injective then some element w € F,, satisfies w = 1 in G, ; the above
construction fails because of the corresponding loops in the Cayley graph.

Let o be an injective free group endomorphism. Let G, be the mapping-
torus group of «. Let C(G,) be the Cayley complex of G, for the usual pre-
sentation Go = (X1,..., X, 15 {7 xit = olx;), i=1,...,n). By Lemma 13.3,
C(G,) is a mapping-telescope of a forest-map. We now want to see what
happens with respect to metrics and dynamics. The Cayley graph of a group
is equipped with a metric which makes each edge isometric to the interval
(0,1). More generally, given a graph I', we call standard metric, and denote




HYPERBOLICITY OF MAPPING-TORUS GROUPS AND SPACES 301

by d5., such a metric on I". We will call mapping-telescope standard metric
any mapping-telescope dj.-metric on C(Gy).

LEMMA 13.5. The mapping-torus group G, of an injective free group
endomorphism acts cocompactly, properly discontinuously and isometrically
on the Cayley complex C(G) equipped with any mapping-telescope standard
metric.

Proof. 'We consider the usual action by left translations of the group on
its Cayley graph. This action is extended in a natural way to a free action on
the Cayley complex C(G,). Let f denote the map giving the strata for the
structure of forest-stack of C(G,), see Lemma 13.3. For a mapping-telescope
metric, all the strata f~'(r) and f~!(r+1) are isometric. And for a mapping-
telescope standard metric all the strata f~!(n), n € Z, are equipped with the
standard metric. This readily implies that the above action is isometric. [

13.2 FREE GROUP ENDOMORPHISMS AND FOREST-MAPS

The main point of Lemma 13.6 below is the so-called ‘bounded-cancellation
lemma’ of [7] for free group automorphisms, and of [10] for the injective free
group endomorphisms.

LEMMA 13.6. Let a be an injective free group endomorphism. Let F and
¢ be the forest and the forest-map on F given by Lemma 13.3. Then @b is a
weakly bi-Lipschitz forest-map of F equipped with the standard metric d.

Proof. If w is any element in F, = (xi,...,x,), and |.|. denotes the
word-metric on F,, then |a(w)| p, S (maxi—y ., |o(x;)] F. )| w] F, - By definition

of the standard metric, and setting py = max;=; - o lax)] F o the map zp

satisfies dF(w(x),w(y)) < pody(x,y) for any pair of vertices x, y. If x, y are
not vertices, then they are joined in their stratum by a horizontal geodesic
which is the concatenation of a path between two vertices, with two proper
subsets of edges. By construction and simpliciality of 2; , proper subsets of
edges are dilated by a bounded factor when applying QZ , SO that the conclusion
follows for the upper bound.

If w is any element in F,, then

o W), < ( max [a™' ), )l

Setting 4 = max;—;__, |of1(xl-)[F” we get |a(w)|, > i[wlF Therefore

d%(zZ(x),@Z(y)) > M—adj;(x, y) for any pair of vertices x,y. The inequality
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