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Definition 13.1 ([19], [3]). An injective endomorphism a of the rank

n free group Fn is hyperbolic if there exist Xa > I and ja > 0 such that

for any w £ Fn, either Aa|w| < \ùîa(w)\ or w admits a preimage a~Ja(w)

such that \a\w\ < \a~ja(w)|, where | | denotes the usual word-metric.

We recall that a subgroup H in a group G is malnormal if w~1Hwf]H {1}
for any element w ^ H of G. We state our theorem about mapping-torus

groups as follows:

THEOREM 13.2. Let a be an injective hyperbolic endomorphism of the

rank n free group Fn. If the image of a is a malnormal subgroup of Fn then

the mapping-torus group Ga (x\,... ,xn,t \ t~lxp a(xi), i 1,...,n) is

a hyperbolic group.

13.1 Relationships with mapping-telescopes

We consider the rank n free group Fn (at, ,xn). Let a be an injective
endomorphism of Fn. Let Ga (xi,..., x„, t ; t~1xit a(x,;), / — 1

be the mapping-torus group of (a,Fn). We consider the Cayley graph T
associated to the given system of generators. Let / be a loop in T whose

associated word in the edges of T reads a relation t~1Xita(xi)~l. We attach a

2-cell by its boundary circle along any such loop /. The resulting topological
space is a 2-complex. This is the Cayley complex of the mapping-torus group
Ga for the given presentation.

Let us check that the above Cayley complex is a mapping-telescope of
a forest-map. We consider the rose IZn with n petals. We label each edge

by a generator xt of Fn. We denote by f the simplicial map on lZn such

that f(xi) is a locally injective path whose associated word in the edges of
lZn reads a(xj). Let us denote by T the universal covering of 7^ (T is
a tree) and by it : T -a !Zn the associated covering-map. We denote by

a simplicial lift of f to T, that is n of) ip ott We consider the

mapping-torus of (^,7Zn), i.e. the 2-complex lZn x [0, l]/(x, 1) ~ (^(jc),0).
Then the universal covering of this mapping-torus is the mapping-telescope
of i/j: F —> F, where F and f are defined as follows:

• We denote by I the set of integers from 1 to Card(Fn/Im(oO) •

The different classes are written Im(a), i — 0,1,.... We denote by
7: I -E {wo,w1,...} the bijection. Then the connected components of F
are in bijection with NCard(/). Each connected component is the image, by a
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bijection /x, of a sequence of Card(J) integers. Each connected component
ß(x0,xi,...) of F is homeomorphic to T via ß(XQ,Xu.,.) : p(x0,xi,...) —^ 7\

• We define the restriction of f to any connected component /x((x0, xi,...))
as follows:

If Card(Z) < +00 then

y I

f -^15 • • • ^ M(C^T Card(/) ] 7 -^15 • • •

where j < Card(I) satisfies £[Ca*^(/)] — k Card(7) + j.
If Card(/) +00 then

V;|/.4((A"(),Xi :

fJL((XQ,Xl,...)) -4 /x((xbX2,

-> (l(xo)ß(xlXu...^P(xo,xu...))(x)

The mapping-torus of (xjj,Tln) is a 2-complex whose 1-skeleton is
the rose with n + 1 petals in bijection with {x\, There is

one 2-cell for each relation r^x/ta^x;)-1. Thus the universal covering
described above is the Cayley complex for Ga with the presentation
Ga (x\,... ,xnjt ; ?_1x/£ ö(xf), 1= 1,..», n). We have thus proved

LEMMA 13.3. Let a be an injective endomorphism of Fn (xi,... ,xn).
Ga (xi,... ,xw, £ ; f^x/f a(x/), i 1,..., xz) be the mapping-torus

group of a. Let C(Ga) be the Cayley complex of Ga for the given presentation.
Then C(Ga) is the mapping-telescope of a forest-map.

Remark 13.4. If the endomorphism a is an automorphism then the

above Cayley complex is the mapping-telescope of a tree-map. The tree is

the universal covering of the rose with n petals. If the endomorphism a is

not injective then some element w e Fn satisfies w — 1 in Ga ; the above

construction fails because of the corresponding loops in the Cayley graph.

Let a be an injective free group endomorphism. Let Ga be the mapping-
torus group of a. Let C(Ga) be the Cayley complex of Ga for the usual
presentation Ga (xi,... ,xw, t ; t~xx(t — a(x/), i 1,..., n). By Lemma 13.3,

C(Ga) is a mapping-telescope of a forest-map. We now want to see what

happens with respect to metrics and dynamics. The Cayley graph of a group
is equipped with a metric which makes each edge isometric to the interval

(0,1). More generally, given a graph T, we call standard metric, and denote
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by dp, such a metric on T. We will call mapping-telescope standard metric

any mapping-telescope dp-metric on C(Ga).

LEMMA 13.5. The mapping-torus group Ga of an injective free group
endomorphism acts cocompactly, properly discontinuously and isometrically

on the Cay ley complex C{Ga) equipped with any mapping-telescope standard

metric.

Proof We consider the usual action by left translations of the group on
its Cayley graph. This action is extended in a natural way to a free action on

the Cayley complex C(Ga). Let / denote the map giving the strata for the

structure of forest-stack of C(Ga), see Lemma 13.3. For a mapping-telescope
metric, all the strata f~l{r) and /_1(r+ 1) are isometric. And for a mapping-
telescope standard metric all the strata f~l(n), ne Z, are equipped with the

standard metric. This readily implies that the above action is isometric.

13.2 Free group endomorphisms and forest-maps

The main point of Lemma 13.6 below is the so-called 'bounded-cancellation
lemma' of [7] for free group automorphisms, and of [10] for the injective free

group endomorphisms.

LEMMA 13.6. Let a be an injective free group endomorphism. Let F and
0 be the forest and the forest-map on F given by Lemma 13.3. Then 0 is a
weakly bi-Lipschitz forest-map of F equipped with the standard metric <fF.

Proof. If w is any element in Fn (xi,... ,x„), and | |F denotes the
word-metric on Fn, then \a(w)\Fn < (max/^...^ j £*(*,•) |Fjn)MFf„ • BY definition

of the standard metric, and setting max^.^ \a(Xi)\Fn, the map 0
satisfies dsF(f(x),f(y)) < p,0dsF(x,y) for any pair of vertices x, y. If x, y are
not vertices, then they are joined in their stratum by a horizontal geodesic
which is the concatenation of a path between two vertices, with two proper
subsets of edges. By construction and simpliciality of 0, proper subsets of
edges are dilated by a bounded factor when applying 0, so that the conclusion
follows for the upper bound.

If w is any element in Fn then

Setting im max,-=li...in I a~\xi)\Kweget |a(w)|Fj> > Therefore

dsF(ip(x),ip(y])) > ydsF(x,y) for any pair of vertices The inequality
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