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The solution can easily be computed by differentiating the first equation and
then subtracting the second, thus obtaining the new system
w// . % ¢/ — k2 ?p
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Taking the difference, we get the first order equation
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whose solution (up to constants) is given by ¢ = (kx — 1) et

In fact, one can easily calculate ,, for a general m.

PROPOSITION 2.12.  t),(k,x) = (x0 —2m~+ 1)(x0 —2m —1) - - - (x0 — 1) €**.

Proof. We could use the direct method of Example 2.11, but it is more
convenient to proceed differently. Namely, we have

(0% — %’”axxa —2m+1)= @0 —2m+ 1)(8* — @8)

as it 1s easy to verify directly. So using induction on m starting with m =0,
we get

(@ — 20y, ) = (00— 2m 1 1) D 1) = Rl ),

and 1,,(k,x) is our solution.  []

3. LECTURE 3

3.1 SHIFT OPERATOR AND CONSTRUCTION OF THE BAKER-AKHIEZER FUNCTION

In Lecture 2, we have introduced the Baker-Akhiezer function 1 (k,x) for
the operator
2¢
L=A- >
2 o

The way to construct ) (k,x) is via the Opdam shift operator. Given a function
m: 2 — Z,, Opdam showed in [Opl] that there exists a unique W -invariant
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differential operator S, of the form 0,,(x)0,,(0x)+1.0.t., with §,,(x) = [[;c5 o®
such that '
LySm = Snq(0)

for every g € C[h] = Clqi, ..., q,]. From this, if we set ¢ (k,x) = S,e*?,
we get

7 Ly = Snq(0) e = q(k)y,

qc C[Q];---aQn]-

We claim that equation (7) must in fact hold for all ¢ € Q,,. Indeed, near a
generic point x, the functions 1 (wk,x) are obviously linearly independent and
satisfy (7) for symmetric g. Thus, they are a basis in the space of solutions
(we know that this space is |W|-dimensional). Consider the matrix of L, in
this basis for any g € Q,,. Since v (k,x) is a polynomial multiplied by e®**,
this matrix must be diagonal with eigenvalues g(k), as desired.

EXAMPLE 3.1. As we have seen in the previous section, for W = Z/2
and h =C,

Smw= @0 —2m+ 1)x0 —2m—1)---(x0 — 1).

3.2 BEREST’S FORMULA FOR Lq

We are now going to give an explicit construction of the operators L, for
any q € Op,.
Let us identify, using our W-invariant scalar product, fj with h*, and let
us choose a orthonormal basis x;,...,x, in h*. If x € h*, we will write D,
for the Dunkl operator relative to the vector in ) corresponding to x under
our identification. Thus i
L=>) D..
i=1

PROPOSITION 3.2 (Berest [Bel). If g € O, is a homogeneous element of

degree d, then
(adL)"lg =0.

Proof. It is enough to prove that
((ad L)** gk, x) = 0.

Indeed, it follows from the definition of (k,x) that in the ring D(U) this
implies : ((ad L)**'¢)S,, = 0, so that (ad L)**! g = 0, since D(U) is a domain.
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