Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 49 (2003)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: ON THE CLASSIFICATION OF RATIONAL KNOTS
Autor: Kauffman, Louis H. / Lambropoulou, Sofia

Kapitel: 2. Rational tangles and their invariant fractions

DOI: https://doi.org/10.5169/seals-66693

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-66693
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

362 L.H. KAUFFMAN AND S. LAMBROPOULOU

various aspects of rational knots and rational tangles can be found in many
places in the literature, see for example [6], [35], [29], [5], [2], [22], [16], [19].

2. RATIONAL TANGLES AND THEIR INVARIANT FRACTIONS

In this section we recall from [15] the facts that we need about rational
tangles, continued fractions and the classification of rational tangles. We intend
the paper to be as self-contained as possible.

A 2-tangle is a proper embedding of two unoriented arcs and a finite
number of circles in a 3-ball B?, so that the four endpoints lie in the
boundary of B>. A rational tangle is a proper embedding of two unoriented
arcs o, o in a 3-ball B?, so that the four endpoints lie in the boundary of
B?, and such that there exists a homeomorphism of pairs:

h: (B, ar,00) = (D* x I, {x,y} x I) (a trivial tangle).

This is equivalent to saying that rational tangles have specific representatives
obtained by applying a finite number of consecutive twists of neighboring
endpoints starting from two unknotted and unlinked arcs. Such a pair of arcs
comprise the [0] or [oo] tangles, depending on their position in the plane,
see illustrations in Figure 2.

FIGURE 2
The elementary rational tangles and the types of crossings

We shall use this characterizing property of a rational tangle as our
definition, and we shall then say that the rational tangle is in twist form.
See Figure 3 for an example.
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FIGURE 3

A rational tangle in twist form

To see the equivalence of the above definitions, let S% denote the two-
dimensional sphere, which is the boundary of the 3-ball B’ and let p
denote four specified points in S%. Let further h: ($%,p) — (S%,p) be a
self-homeomorphism of S$? with the four points. This extends to a self-
homeomorphism % of the 3-ball B® (see [29], page 10). Further, let a denote
the two straight arcs {x,y} x I joining pairs of the four points in the boundary
of B>. Consider now h(a). We call this the tangle induced by h. We note that
up to isotopy (see definition below) & is a composition of braidings of pairs of
points in S? (see [24], pages 61 to 65). Each such braiding induces a twist in the
corresponding tangle. So, if 4 is a éomposition of braidings of pairs of points,
then the extension / is a composition of twists of neighboring end arcs. Thus
h(a) is a rational tangle and every rational tangle can be obtained this way.

A tangle diagram is a regular projection of the tangle on a meridian disc.
Throughout the paper by ‘tangle’ we will mean ‘regular tangle diagram’. The
type of crossings of knots and 2-tangles follow the checkerboard rule: shade
the regions of the tangle (knot) in two colors, starting from the left (outside) to
the right (inside) with grey, and so that adjacent regions have different colors.
Crossings in the tangle are said to be of positive type if they are arranged with
respect to the shading as exemplified in Figure 2 by the tangle [+1], i.e. they
have the region on the right shaded as one walks towards the crossing along
the over-arc. Crossings of the reverse type are said to be of negative type and
they are exemplified in Figure 2 by the tangle [—1]. The reader should note
that our crossing type conventions are the opposite of those of Conway in
[6] and of those of Kawauchi in [16]. Our conventions agree with those of

Ernst and Sumners [10], [40] which in turn follow the standard conventions
of biologists.
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We are interested in tangles up to isotopy. Two rational tangles, T, S,
in B® are isotopic, denoted by T ~ S, if and only if any two diagrams of
them have identical configurations of their four endpoints on the boundary of
the projection disc, and they differ by a finite sequence of the well-known
Reidemeister moves [27], which take place in the interior of the disc. Of
course, each twisting operation used in the definition of a rational tangle
changes the isotopy class of the tangle to which it is applied.

2-TANGLE OPERATIONS. The symmetry of the four endpoints of 2-tangles
allows for the following well-defined (up to isotopy) operations in the class
of 2-tangles, as described in Figure 4. We have the sum of two 2-tangles,
denoted by ‘+’ and the product of two 2-tangles, denoted by ‘x’. This
product ‘x’ is not to be confused with Conway’s product ‘-’ in [6].

In view of these operations we can say that a rational tangle 1s created
inductively by consecutive additions of the tangles [£1] on the right or on
the left and multiplications by the tangles [£1] at the bottom or at the top,
starting from the tangles [0] or [oco]. And since, when we start creating a
rational tangle, the very first crossing can be equally seen as a horizontal
or as a vertical one, we may always assume that we start twisting from the
tangle [0]. Addition and multiplication of tangles are not commutative. Also,
they do not preserve the class of rational tangles. The sum (product) of two
rational tangles is rational if and only if one of the two consists in a number
of horizontal (vertical) twists.

\ /
NN/ T

T+S f \
TS

FIGURE 4
Addition, multiplication and inversion of 2-tangles

The mirror image of a tangle T, denoted —T, is obtained from 7 by
switching all the crossings. So we have —[n] = [—n] and —f’lz—] = [—_i”—]
Finally, the rotation of T, denoted 7", is obtained by rotating 7' on its plane
counterclockwise by 90°, whilst the inverse of T, denoted T', is defined to

be —T". Thus inversion is accomplished by rotation and mirror image. For
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example, [n]i = ﬁ and E—lﬁi — [n]. Note that 77 and T' are in general not
isotopic to T.

Moreover, by joining with simple arcs the two upper and the two lower
endpoints of a 2-tangle 7, we obtain a knot called the Numerator of T,
denoted by N(T). Joining with simple arcs each pair of the corresponding
top and bottom endpoints of T we obtain the Denominator of T, denoted
by D(T). We have N(T) = D(T") and D(T) = N(T"). We point out that the
numerator closure of the sum of two rational tangles is still a rational knot
or link. But the denominator closure of the sum of two rational tangles is not

necessarily a rational knot or link, think for example of the sum %] as é

m Numeratorg | Denominator

T < T > ~
U closure g § closure
N(T) D(T)
FIGURE 5

The numerator and denominator of a 2-tangle

RATIONAL TANGLE ISOTOPIES. We define now two isotopy moves for
rational tangles that play a crucial role in the theory of rational knots and
rational tangles.

DEFINITION 1. A flype is an isotopy of a 2-tangle T (or a knot or link) ap-
plied on a 2-subtangle of the form [+1]+7 or [+1]*¢ as illustrated in Figure 6.
A flype fixes the endpoints of the subtangle on which it is applied. A flype
shall be called rational if the 2-subtangle on which it applies is rational.

XL - X

flype

FIGURE 6
The flype moves
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We define the truncation of a rational tangle to be the result of partially
untwisting the tangle. For rational tangles, flypes are of very specific types.
Indeed, we have:

Let T be a rational tangle in twist form. Then
(1) T does not contain any non-rational 2-subtangles.

(11) Every 2-subtangle of T is a truncation of T.

For a proof of these statements we refer the reader to our paper [15]. As
a corollary we have that all flypes of a rational tangle 7 are rational.

DEFINITION 2. A flip is a rotation in space of a 2-tangle by 180°. We
say that TMP is the horizontal flip of the 2-tangle T if TMP is obtained
from T by a 180° rotation around a horizontal axis on the plane of 7', and
TV is the vertical flip of the tangle T if TVUP is obtained from T by a
180° rotation around a vertical axis on the plane of 7. See Figure 7 for
illustrations.

/

180°
R __6 B

hflip

180°
R S A
I vilip

FIGURE 7
The horizontal and the vertical flip

Note that a flip switches the endpoints of the tangle and, in general, a flipped
tangle is not isotopic to the original one; the following is a remarkable property
of rational tangles:

THE FLIPPING LEMMA. If T is rational, then:

i) T~TVP G T~TM  and (i) T~ (T =T .
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To see (i) and (ii) we apply induction and a sequence of flypes, see [15]
for details. (T) = (IT")" is the tangle obtained from 7 by rotating it on
its plane by 180°, so statement (iii) follows by applying a vertical flip after
a horizontal flip. Note that the above statements are obvious for the tangles
[0], [cc], [n] and ﬁ Statement (iii) says that for rational tangles the inversion
is an operation of order 2. For this reason we shall denote the inverse of
a rational tangle 7 by 1/T, and hence the rotation of the tangle 7' will be
denoted by —1/T. This explains the notation for the tangles [ni] For arbitrary
2-tangles the inversion is an order 4 operation. Another consequence of the

above property is that addition and multiplication by [£1] are commutative.

STANDARD FORM, CONTINUED FRACTION FORM AND CANONICAL FORM FOR
RATIONAL TANGLES. Recall that the twists generating the rational tangles could
take place between the right, left, top or bottom endpoints of a previously
created rational tangle. Using obvious flypes on appropriate subtangles one can
always bring the twists all to the right (or all to the left) and to the bottom (or
to the top) of the tangle. We shall then say that the rational tangle is in standard
form. For example Figure 1 illustrates the tangle (([3] *ﬁ)—*— [2]) in standard
form. In order to read out the standard form of a rational tangle in twist form
we transcribe it as an algebraic sum using horizontal and vertical twists. For
example, Figure 3 illustrates the tangle ((([3] x [?1]) + [—1]) [%4—]) + [2] 1n
non-standard form.

FIGURE 8§

The standard representations

Figure 8 illustrates two equivalent (by the Flipping Lemma) ways of
representing an abstract rational tangle in standard form: the standard
representation of a rational tangle. In either illustration the rational tangle
begins to twist from the tangle [a,] ([as] in Figure 8), and it untwists from
the tangle [a;]. Note that the tangle in Figure 8 has an odd number of sets
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of twists (n = 5) and this causes [a;] to be horizontal. If n is even and [a,]
1s horizontal then [a;] has to be vertical.

5
A
a1 a planar a1 a3 a5
4 ~
-a -a i
: 2 4
Isotopy J

FIGURE 9
The standard and the 3-strand-braid representation

Another way of representing an abstract rational tangle in standard form
is illustrated in Figure 9. This is the 3-strand-braid representation. For an
example see Figure 10. As Figure 9 shows, the 3-strand-braid representation
is actually a compressed version of the standard representation, so the two
representations are equivalent by a planar rotation. The upper row of crossings
of the 3-strand-braid representation corresponds to the horizontal crossings of
the standard representation and the lower row to the vertical ones. Note that,
even though the type of crossings does not change by this planar rotation,
we need to draw the mirror images of the even terms, since when we rotate
them to the vertical position we obtain crossings of the opposite type in the
local tangles. In order to bear in mind this change of the local signs we
put on the geometric picture the minuses on the even terms. We shall use
both ways of representation for extracting the properties of rational knots and

tangles.

FIGURE 10
The ambiguity of the first crossing




ON THE CLASSIFICATION OF RATIONAL KNOTS 369

From the above one may associate to a rational tangle diagram in standard
form a vector of integers (aj,ay,...,a,), where the first entry denotes the
place where the tangle starts unravelling and the last entry where it begins to
twist. For example the tangle of Figure 1 is associated to the vector (2, —2,3),
while the tangle of Figure 3 corresponds after a sequence of flypes to the vector
(2, -4, —1,3,3). The vector associated to a rational tangle diagram is unique up
to breaking the entry a, by a unit, i.e. (a1,as,...,a,) = (a1,a2,...,a,—1,1),
if a, >0, and (aj,a,...,a,) = (a,a,...,a, +1,—1), if a, < 0. This
follows from the ambiguity of the very first crossing, see Figure 10. If
a rational tangle changes by an isotopy, the associated vector might also
change.

REMARK 1. The same ambiguity implies that the number » in the above
notation may be assumed to be odd. We shall make this assumption for proving
Theorems 2 and 3.

The next thing to observe is that a rational tangle in standard form can be
described algebraically by a continued fraction built from the integer tangles

[a1],[az], ..., [a,] with all numerators equal to 1, namely by an expression
of the type:
1
[[a1], [a2], ..., [an]] == [a1] + n
[a2] + -+ +
[an~1] +

[an]

for as,...,a, € Z— {0} and n even or odd. We allow [a;] to be the tangle
[0]. This expression follows inductively from the equation

T 1 1
* — = .
[n] 1
[”l]‘l—?

Then a rational tangle is said to be in continued fraction form. For example,
Figure 1 illustrates the rational tangle [[2],[—2],[3]], while the tangles of
Figure 8 and 9 all depict the abstract rational tangle [[a;], [a2], las], [a4], [as]].

1

. . l . . .
The tangle equation T x* W= L implies also that the two simple

algebraic operations: addition of [+1] or [—1] and inversion between
rational tangles generate the whole class of rational tangles. For T =
[lail,[az], ..., [a,]] the following statements are now straightforward.
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L TH+[x1] =[la £ 1], [a2], - - ., [a]],

1
2. "T‘ — [[0]7[a1]7[a2]7"'7[an]]7
3. T =[[-ail,[-al,...,[—all,
4. T = [[al]a[a2]7"'7[an_ 1]7[1]]) if ap >O7

and T =[[ai],[a2],...,[a, + 1],[-1]], if @, <O.

A tangle is said to be alternating if the crossings alternate from under
to over as we go along any component or arc of the weave. Similarly, a
knot 1s alternating if it possesses an alternating diagram. We shall see that
rational tangles and rational knots are alternating. Notice that, according to
the checkerboard shading (see Figure 2 and the corresponding discussion),
the only way the weave alternates is if any two adjacent crossings are of
the same type, and this propagates to the whole diagram. Thus, a tangle or
a knot diagram with all crossings of the same type is alternating, and this
characterizes alternating tangle and knot diagrams. It is important to note that
flypes preserve the alternating structure. Moreover, flypes are the only isotopy
moves needed in the statement of the Tait Conjecture for alternating knots.
An important property of rational tangles is now the following :

A rational tangle diagram in standard form can be always isotoped to an
alternating one.

FIGURE 11
Reducing to the alternating form

The process is inductive on the number of crossings and the basic isotopy
move is illustrated in Figure 11, see [15] for details. We point out that this
isotopy applies to rational tangles in standard form where all the crossings
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are on the right and on the bottom. We shall say that a rational tangle
T = [[a1],[az],-..,[a,]] is in canonical form if T is alternating and n is
odd. From Remark 1 we can always assume n to be odd, so in order to
bring a rational tangle to the canonical form we just have to apply the isotopy
moves described in Figure 11. Note that T alternating implies that the g’s
are all of the same sign.

The alternating nature of the rational tangles will be very useful to us
in classifying rational knots and links. It turns out from the classification of
alternating knots that two alternating tangles are isotopic if and only if they
differ by a sequence of flypes. (See [41], [20]. See also [34].) It is easy to see
that the closure of an alternating rational tangle is an alternating knot. Thus
we have:

Rational knots are alternating, since they possess a diagram that is the
closure of an alternating rational tangle.

CONTINUED FRACTIONS AND THE CLASSIFICATION OF RATIONAL TANGLES.
From the above discussion it makes sense to assign to a rational tangle in
standard form, T = [[a(],[a2],...,[a,]], for a; € Z, ay,...,a, € Z — {0}
and n even or odd, the continued fraction

F(T) =lay,ay,...,a,] :=a; +
? 1

ap—1 + —
a

if T # [oo], and F([oo]) i= 00 = %, as a formal expression. This rational
number or infinity shall be called the fraction of T. The fraction is a

topological invariant of the tangle 7. We explain briefly below how to see
this.

The subject of continued fractions is of perennial interest to mathematicians.
See for example [17], [23], [18], [47]. In this paper we shall only consider
continued fractions of the above type, i.e. with all numerators equal to 1.
As in the case of rational tangles we allow the term @ to be zero.
Clearly, the two simple algebraic operations addition of +1 or —1 and
inversion generate inductively the whole class of continued fractions starting

from zero. For any rational number g the following statements are really
straightforward.
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1. There are a; € Z, ay,...,a, € Z — {0} such that P_ [a1, a0, ..., a,],
q

9, P 1= latl,a,...,a,],
q
3. g:[oyalaa27"')an]>
p
4. i [—a1,—ay,...,—a,],
q
P :
5. - =la,a,...,a,—1,1], if a, >0,
q
mdgzmwmmﬂﬁﬂrﬂ,ﬁ%<0

Property 1 is a consequence of Euclid’s algorithm, see for example [17].
Combining the above we obtain the following properties for the tangle fraction.

1. FT+[E1])=FT) +1,
1 1

2. F) = 5

3, F(-T) = —F(T).

The last ingredient for the classification of rational tangles is the following
fact about continued fractions: Every continued fraction [a1,a,...,a,] can
be transformed to a unique canonical form [Byi, 32, ..., Bnl, where all (;’s
are positive or all negative integers and m is odd.

One way to see this is to evaluate the continued fraction and then apply
Euclid’s algorithm, keeping all remainders of the same sign. There is also
an algorithm that can be applied directly to the initial continued fraction to
obtain its canonical form. This algorithm works in parallel with the algorithm
for the canonical form of rational tangles, see [15] for details.

From the Tait conjecture for alternating rational tangles, from the unique-
ness of the canonical form of continued fractions and from the above properties
of the fraction we derive that the fraction not only is an isotopy invariant
of rational tangles but it also classifies rational tangles. This is the Conway
Theorem. See [15] for details of the proof. For the isotopy type of a rational
tangle with fraction § we shall use the notation [15’]. Finally, it is easy to see
the following useful result about rational tangles: '

Suppose that T + [n] is a rational tangle, then T is a rational tangle.
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