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Hence |1c|f(1) ¥ oew ID{f(I), so that IIC[f(I) > 1+X(n)lllf(1) with X(n) =
:\\,, :\\ —. Now lim, o0 li(g’g()n) — 1, so that for some n, > 1, for any
n>n,, 2@ > 1 GQince the horizontal length of any interval [ in Ic
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is at most Cg2(J,J"), and the telescopic length of the associated py C p 1s at
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On the other hand, < 2Jntg+ A"z, +J" for any n > n.. The last
two inequalities give, for n > n., 2Jnty + A~"J ey ¥ 2 seom iy
equwalently 2nty +J > (-2C—(J—J,—) — A"y . We choose no = n, such

that m A" > 0. We get
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[|;q) > N M, then |h|;,, > M. Therefore h is dilated in the past after 7. We
choose N such that ANAT" > A. Thus, if |1],, > max(\y M, 2ngitl
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then I is dilated in the past after (1n,Cs2(J,J") + N)ty. The arguments and
computations in the case where max,c,f(x) < f(I) are the same. L]

h is not dilated in the future after 7. If

7.  SUBSTITUTION OF QUASI GEODESICS

LEMMA 7.1. Let p be a (J,J")-quasi geodesic. Let q be obtained from
p by replacing subpaths p; C p by (L,L')-quasi geodesics q; satisfying the
following properties :

e g; has the same endpoints as p;,

e g; is L-close to p;,

4l 5y < Llpil g,

There exists a constant C;(L,L',J,J"), which increases in each variable,
such that q is a (C71(L,L',J,J"), C; (L, L', J,J"))-quasi geodesic which is
L-close to p.

Proof. Since each g; is L-close to a p;, and with the same endpoints,
q is L-close to p. Let us consider any two points x, y in ¢ and let g, C g
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be the subpath of g between x and y. If both x and y lie in a ¢;, or
in a same subpath in the closed complement of the union of the ¢;’s, then
quy|()7,?{) < max(L, J)d(X 206 Y) + max(L',J'). Otherwise ¢y, = wjwws3,
where w;, ws are contained either in some ¢; or in p, and w, begins and ends
with the initial or terminal point of some ¢;. The third property concerning the
g;’s leads to |w;| G = L|p> where p, C p is the subpath of p with the

same endpoints as w,. Thus |g < LJdz_ (x,y)+2max(L',LJ). [
wlX ) = eE Y

‘(X H)’

LEMMA 7.2. Let p be a straight (J,J')-quasi geodesic —-hole such that
maxe, f(I)—f(x) < L, where I is the horizontal geodesic joining the endpoints
of p. Then there exists a constant Cy,(L,J,J") > M, which increases in each
variable, such that

D Uy < G2, 9P g 4y

2) I is a straight (C7,(L,J,J"), C7o(L,J,J"))-quasi geodesic which is
Cyo(L,J,J")-close to p.

Proof. A horizontal geodesic is always straight. The horizontal geodesic
I 1s the pulled-tight projection of p. Thus, by the bounded-dilatation property,
]y < N 11l 4, By Lemma 5.6, I is Csg(L)-close to p. Consider any
subpath I’ of I; it is the pulled-tight projection of some subpath p/ of p. By
the bounded-dilatation property, |I'|;, < M p 1()7,%). Since p is a (J,J")-quasi
geodesic, |I'|;;) < AL = H)(z(p’), t(p'))+J"). Since I' is Cs.¢(L)-close to p’,

gy < Nidd gy, GUD, 1T) + N (2ICs6(L) + ). O

LEMMA 7.3. Let p be a straight (J,J')-quasi geodesic —-hole such that
the horizontal length of the horizontal geodesic I between its endpoints is less
than or equal to L. Then there exists a constant C;5(L,J,J") > M, which
increases in each variable, such that

1) |I|f([) S C7.3(L7J7J/)|p‘(z%)'

2) I is a straight (C75(L,J,J"), C73(L,J,J"))-quasi geodesic which is
Cy5(L,J,J")-close to p.

Proof. Since p is a (J,J')-quasi geodesic,

—f(D| < JI J .
r?eeg(lf(X) fD] < ||f(1)+

Lemma 7.3 now follows from Lemma 7.2. L]

ETER
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LEMMA 7.4. Let p be a straight (J,J')-quasi geodesic stair. For any
L > 0, there exists a constant Cy.4(L,J,J"), which increases in each variable,
such that if q is a straight stair whose points are at horizontal distance at
most L from p, and with the same endpoints as p, then

1) g is a straight (C7.4(L,J,J"), C7.4(L,J,J"))-quasi geodesic stair which
is L-close to p.

2) S C7.4(L7J7 ‘]’

|Q|(§{’q{) )lpl(f’fH)'

Proof. Consider a stair S, in the disc bounded by pUg, whose endpoints
are those of p and ¢, and whose vertical geodesics end at ¢, all the stairs
being oriented so that f is increasing along them. Consider a subpath §' of
S which is the concatenation of a vertical segment followed by a horizontal
one. By assumption, the horizontal length X of § is bounded above by L.
Let ¢ be its vertical length. The bounded-dilatation property implies that the
quotient of |$| &) by the telescopic length of the subpath of p between

the endpoints of §’ is bounded above by QO = ﬁx,—x Since X < L, QO
tends to 1 as t — 4oco0. One thus obtains a coanrtant T such that for
t > T, Q is bounded above by some constant, depending on L. When
both # and X are close to O then Q 1is close to 1. Hence, since QO 1is
continuous, @ admits an upper bound, denoted by A(L), for all the ¢ and
X considered. This upper bound will be the same for all the subpaths S as
above.

The stair S is a concatenation of such subpaths §’, possibly with one or
two subpaths of p at the extremities. Thus the additivity of the telescopic
length gives |S1()Z%) < A(L)1p|&w. Let S” be a subpath of S which is
the concatenation of a horizontal subpath followed by a vertical one. The
path S is the concatenation of such subpaths S’ with possibly one or two
subpaths of g at the extremities. Exactly the same arguments as above give
1915 2y < AWDIS| 5 5~ We thus get |g| 5, < ALY |p| &30 1t only remains
to prove that g is a quasi geodesic with constants of quasi geodesicity
depending only on L,J,J'. Let x,y be any two points in g. As usual
gxy 1is the subpath of ¢ between x and y and we denote by p,, the
subpath of p between the two points X',y in p which are at horizontal
distance at most L from x and y. We consider a stair S between Gxy
and p,, , with the same endpoints as g,,. The same arguments as above
apply and give quy|<§’%) & A(L)zlpx/yxl(zm. Since p is a (J,J")-quasi
geodesic, we conclude that |g,y| G S JALYd ~ . (x',y") + J'A(L)*. Since

X, H)
dz %)(xl V) < d5 4% Y) + 2L, the proof of Lemma 7.4 is complete.  []
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