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cette construction ne dépend pas de I’écriture de X sous la forme G/H. Les
fibres sont isomorphes au quotient du groupe de Lie complexe L = N JH°
par le sous-groupe discret cocompact I' = H JHY; ce sont donc des variétés
parallélisables connexes. Nous renvoyons le lecteur a [9], [271, [15] et [2]
pour les démonstrations de ces résultats.

VOCABULAIRE. Si X est une variété homogene compacte, les fibres et la
base de la fibration de Tits de X seront appelées fibres de Tits et base de Tits
de X.

4.2 PREMIERE APPLICATION

Soit O la base et F la fibre de la fibration de Tits d’une variété homogene
compacte X. Si f est un endomorphisme de X, il induit un endomorphisme
f de la variété de drapeaux Q. Nous pouvons donc appliquer le théoreme
de Paranjape et Srinivas. S’il apparait un facteur Q = Qp X O; sur lequel
f induit un automorphisme f,: Qo — Qo, la dynamique de f s’appauvrit
considérablement: f, est induite par une transformation linéaire isotope a
I’identité.

Afin de démontrer le théordme 1.1, nous pourrons donc supposer que la
base Q de la fibration de Tits est un produit d’espaces projectifs:

(11) O=P" x---xP™ keN,

et que f agit diagonalement: f = (f;, ...,f;) ot f; € End(P").

Soit ¢ un point de Q et P’ I’espace projectif qui passe par ¢ et est donné
par le j®™ facteur du produit (11). L’image réciproque de la fibration de Tits
par I’injection P’;j — O ne dépend pas de g car X est homogene. On obtient
ainsi une variét€ homogene X; dont la fibration de Tits a des fibres isomorphes
a celles de X et une base isomorphe a P” . Puisque tout endomorphisme d’un
espace projectif admet des points fixes, f induit un endomorphisme de X;.
Nous étudierons donc d’abord les endomorphismes des variétés homogenes
dont la base de Tits est un espace projectif.

5. QUELQUES EXEMPLES

Présentons maintenant quelques exemples qui illustrent 1’invariance de la
fibration de Tits et donnent une petite idée des phénomenes qui peuvent
apparaitre lorsque la variété homogene n’est pas kahlérienne.
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EXEMPLE 5.1. L’exemple le plus simple de variété homogeéne qui ne soit
pas kdhlérienne est la surface de Hopf, obtenue en quotientant C?\ {0} par
les homothéties de rapport \”, n € Z, A étant un nombre complexe non nul.
Cette surface S, est difféomorphe a2 S x S'. Elle fibre sur P', les fibres
étant isomorphes a la courbe elliptique C*/{\).

En voici une seconde construction qui montre directement que cette variété
est homogene. Soit Hy le sous-groupe de SL(2,C) défini par

(12) H,\_—_{<>(\)n )\Z_:n>:n€Z,z€C}.

Le quotient de SL(2,C) par H) est isomorphe a la surface de Hopf S). La
fibration elliptique de S, sur P! coincide avec sa fibration de Tits et provient
de I’inclusion de H, dans le groupe des matrices triangulaires supérieures.

Si P(X,Y) et OQ(X,Y) sont deux polyndmes homogenes de degré d qui
n’ont que ’origine comme zéro commun, la transformation

¢(x7 y) — (P(x7 y)7 Q(x7 y))

passe au quotient en un endomorphisme de degré d° sur la surface de Hopf.
On construit ainsi de nombreux exemples d’endomorphismes; 1’invariance de
la fibration de Tits résulte immédiatement de I’homogénéité de P et Q.

EXEMPLE 5.2. Le deuxieme exemple de vari€ét€s complexes compactes
non kahlériennes est celui donné par Eugenio Calabi et Beno Eckmann dans
[11]. 1 s’agit de variétés de dimension 3 difféomorphes a2 S* x S*. Chacune
des spheéres fibre en cercles sur P! et le produit de ces deux fibrations donne
naissance a une fibration elliptique localement triviale. L’invariant modulaire
de la fibre peut étre fixé de maniere arbitraire lors de la définition de la
structure complexe sur S° x S>. Si cet invariant est égal a T, fous noterons
M., la variété de Calabi-Eckmann correspondante.

Ces variétés peuvent €tre construites de la maniere suivante. Soit V =
(C?\ {0})?. L’action de C sur V donnée par

(13) t4 ((u,0), (x, ) = ((e7u, e?v), (7 7"/?x, ™/ *y))

est fidele dés que le nombre complexe 7 appartient au demi-plan de Poincaré.
L’espace des orbites est alors une variété isomorphe a M, . Cette construction
a I’avantage de montrer directement que M, est homogene et possede de
nombreux endomorphismes. Pour en construire, il suffit en effet d’exhiber des
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transformations holomorphes de V qui permutent les orbites de I’action (13).
Par exemple,

(14) ((,0), (x5, ) = (@ + v, + ), +2°,57)

détermine un endomorphisme de M, dont le degré topologique est €gal a 34,
Il est facile de constater sur cet exemple que la fibration elliptique de
M, sur P! x P! est équivariante: I’endomorphisme permute les fibres et
induit une transformation polynomiale de degré 3 sur chaque P'. C’est une
illustration de I’invariance de la fibration de Tits. L’égalité entre les degrés
des deux endomorphismes de P! illustre un autre phénomene. Notons E. la
fibre elliptique de M, . La suite exacte longue des groupes d’homotopie

15) = m (P xP) = m(E) = mM;) = m (P X P') — -

montre que la simple connexité de M, résulte du caractere surjectif de la
fleche m (P! x P') — m(E,). L’action d’un endomorphisme de P' sur le
second groupe d’homotopie m(P!) ~ Z coincide avec la multipliation par
le degré de I’endomorphisme. Celle d’un endomorphisme holomorphe de E;
sur m(E;) ~ Z? se fait par une similitude dont le rapport o est égal a la
racine carrée du degré topologique. Puisque la suite exacte est équivariante,
il s’ensuit que le degré de I’endomorphisme sur chaque P! est égal & «. En
particulier, tous les endomorphismes de P! x P! ne se relévent pas en des
endomorphismes de M. .

E. Calabi et B. Eckmann construisent des structures complexes similaires
sur §%*1 x §%*1 pour toute paire d’entiers positifs (p,q) (voir [11], [20]).
Une étude analogue a la précédente peut étre effectuée pour toutes ces variétés.

EXEMPLE 5.3. Donnons maintenant un exemple pour lequel les fibres de
Tits sont des nilvari€t€s (et pas des tores). Soit H3(C) le groupe de Heisenberg
constitué des matrices

(16)

OO =
O ==
—_ N

ou x, y et z sont trois nombres complexes. Le quotient de H3(C) par Hs(Z[i])
est une vari€té complexe compacte que nous noterons Ms.

Soit P le sous-groupe de SL(2,C) formé par les matrices triangulaires
sup€rieures. Si 7 appartient a Z[i], on note p, la représentation de P dans




252 S. CANTAT

AutO(M3) déterminée par la translation a gauche par 1’élément

AN R
17) pr (0 a_1>: 01 0
00 I

Puisque «1’image » de p, est dans le centre de #H3(C), il est facile de voir que
p- définit bien une représentation a valeurs dans Aut(M3) et que la variété X
obtenue par suspension de cette représentation au-dessus de P! = SL(2,C)/P
est homogene. La fibration de Tits de X, coincide avec la projection sur P!
et n’est pas triviale. Pour s’en convaincre, il suffit de remarquer que I’image
du second groupe d’homologie de P! dans la fibre M3 est engendrée par la
matrice de parametres x =y =0, z=17.

Si p et g sont deux entiers et f est un endomorphisme de P! de degré
pq, la transformation

1 x z i 1 px pgz
(18) Ju:v, [0 1T y )= (f(Qu:vD, {0 1 gy )
0 0 1 0O O 1

détermine un endomorphisme de X, de degré (pq)’. Tous les endomorphismes
de P! se relevent donc en des endomorphismes de Ms. Les endomorphismes
ainsi construits n’ont pas de facteur inversible.

EXEMPLE 5.4. Donnons maintenant un exemple de variété homogene non
kahlérienne ne possédant pas d’endomorphisme de degré supérieur a 1. Soit
X le quotient de SL(n,C) par un sous-groupe discret cocompact I'. Pour
montrer que tout endomorphisme f: X — X est un automorphisme, utilisons
que X est parallélisable, son fibré cotangent €tant trivialisé par les 1-formes
invariantes par translation a droites sur SL(n, C). L’action de f sur les formes
différentielles induit ainsi un endomorphisme f* de 1’algebre de Lie sl(n, C),
dont le déterminant est égal au degré topologique de f. Tout endomorphisme de
sl(n, C) étant un automorphisme intérieur (voir [16], prop. 1.98), le déterminant
de f* est égal a 1 et f est un automorphisme.

6. EXISTENCE DE FACTEURS INVERSIBLES.

Nous démontrons maintenant le théoreme énoncé dans 1’introduction. Les
idées principales sont déja apparues dans la partie précédente.
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