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CARACTERISATION GEOMETRIQUE DES SOLUTIONS DE MINIMAX
POUR L’EQUATION DE HAMILTON-JACOBI

par Gianmarco CAPITANIO *)

ABSTRACT. The minimax solution is a weak solution of a Cauchy problem for the
Hamilton-Jacobi equation, constructed from a generating family (quadratic at infinity)
of its geometric solution. In this paper we give a new construction of the minimax in
terms of Morse theory, and we show its stability by small perturbations of the generating
family. Then we show that the max-min solution coincides with the minimax solution.
Finally, we consider the wave front corresponding to the geometric solution as the
graph of a multi-valued solution of the Cauchy problem, and we give a geometric
criterion to find the graph of the minimax.

INTRODUCTION

En 1991 Marc Chaperon a proposé, dans [Cha], une méthode géométrique
pour construire des solutions faibles du probleme de Cauchy pour I’équation
de Hamilton-Jacobi :

(PC) Ou(t,q) + H(t,q,0,u(t,q)) =0, pourtout >0, g€ Q,
M(Oa Q) - MO(Q)a pour tout q = Q7

de hamiltonien H et donnée initiale uy sur une variété fermée Q.

La méthode classique des caractéristiques conduit, d’aprés une idée
de Maslov, a considérer comme solution généralisée de (PC) une sous-
vari€té lagrangienne du fibré cotangent de 1’espace-temps R x Q, la solution
géométrique.

La “projection” de la solution géométrique dans I’espace des jets d’ordre 0
sur Q est, en général, le graphe d’une fonction multivaluée. La méthode de
minimax permet de déduire une “vraie” fonction a partir de cette solution multi-

*) Recherche soutenue par I'Istituto Nazionale di Alta Matematica “F. Severi”.
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valuée. L'outil principal dans cette construction sont les familles génératrices
quadratiques a.1’infini des sous-variétés lagrangiennes. Le théoréme d’existence
et d’unicité de ces familles permet d’associer a chaque point de 1’espace-temps
une fonction, quadratique a I’infini dans les parametres (la famille génératrice
évaluée en ce point), dont on consideére la valeur critique de minimax. La
fonction ainsi définie s’avere étre une solution faible lipschitzienne de (PC),
la solution de minimax.

Ce travail est divisé en trois parties.

Dans la premiére partie on présente une nouvelle construction de la valeur
critique de minimax d’une fonction quadratique a I’infini, basée sur la théorie
de Morse. Cette construction permet de caractériser de maniere simple le
minimax d’une fonction générique parmi les fonctions quadratiques a I’infini
en termes du complexe de Morse associé. Le résultat principal de cette partie
est la stabilité de la valeur critique de minimax par petites déformations de
la fonction. - |

Dans la deuxieme partie on rappelle la construction de la solution
géométrique de (PC) et on démontre que toute solution géométrique est

1sotope, pour temps finis, a la section nulle du fibré cotangent; elle admet .

donc une unique famille génératrice quadratique a I’'infin1 S(z, g; £). La solution
de minimax est, en tout point fixé (#y > 0, qp) de 1’espace-temps, le minimax
de la fonction génératrice quadratique a I’infini, min max{¢ — S(t, qo;€)}. La
stabilité par petites déformations donne une preuve nouvelle (géométrique) de
la continuité de cette solution. On montre aussi que la solution de max-min,
définie de maniere analogue, coincide avec celle de minimax.

Dans la troisiéme partie on montre comment réduire le probléeme de
déterminer la solution de minimax associée a un front d’onde (graphe d’une
fonction multivaluée) de dimension quelconque au cas d’un tel front de
dimension 1. Un théoreme récent de Chekanov et Pushkar ([Ch2], [C-P])
permet alors d’établir un critere géométrique purement combinatoire pour
déterminer le graphe de la solution de minimax directement sur le front d’onde.

REMERCIEMENTS. Plusieurs personnes m’ont aidé pendant la réalisation
de ce travail: je les remercie tres chaleureusement. Franco Cardin et Marc
Chaperon m’ont introduit a ce sujet et m’ont posé le probleme initial; ils
ont suivi toujours avec intérét ma recherche. Notamment, sans le soutien de
Franco Cardin, la suite n’aurait pas été possible. Je dois a Emmanuel Ferrand
les références [Bar], [Ch2] et [C-P]: il m’a expliqué le théoreme de Chekanov-
Pushkar et m’a suggéré de 1’utiliser dans mon travail. Enfin, sans 1’aide de
Yuri Chekanov, le Théoréme 3.5 serait encore une conjecture.
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1. MINIMAX D’UNE FONCTION QUADRATIQUE A L’INFINI

1.1 PRELIMINAIRES

Soient X un espace topologique, D" un disque de dimension n, orienté,
et 1: S""1 — X une application. On considére sur S"~! = D" I’orientation
induite. On appelle cellule de dimension »n le couple ¢" := (D", v). L’espace
que ’on construit en identifiant chaque point x de S"~! au point 3 (x) est
obtenu en attachant a X la cellule ¢"; on le note XU oc" ou bien XUy D".

Un espace est dit cellulaire s’il est obtenu par 1’attachement de cellules
(un nombre fini pour chaque dimension) a un nombre fini de points (cellules
de dimension 0). Un espace cellulaire X est un complexe cellulaire si chaque
cellule est attachée a une cellule de dimension plus petite.

Il est bien connu que tout espace cellulaire est homotopiquement équivalent
a un complexe cellulaire, voir par exemple [DNF], vol.IIl, §4.

Soit X un complexe cellulaire. La réunion des cellules de dimension k& < n
est appelée squelette cellulaire de dimension n, que ’on note X". On a alors
la suite des squelettes emboités

Xc-..cxfc...cx.

L’espace quotient X*~!/X*=2 ou X*=2 est identifié & un point, est un bouquet
de spheres de dimension k — 1. Considérons une cellule of = (D*, ) et
1’ application

1d

i ODF = Sk Y, xk-l Xk=1/xk=2 T, g1

ot m; est la projection sur la i-eéme sphere du bouquet. Soit o%~! la cellule
de X correspondant & la sphere S¢—!.

DEFINITION. On appelle coefficient d’incidence du couple de cellules

ok, a%=! le nombre entier

(0" : of 7] := deg(¥hy).

Soient E = RX et f: E — R une fonction de Morse excellente '), avec un
nombre fini de points critiques. D’aprés le lemme de Morse, autour d’un point

l . . . .. 7 Pl 2z z ot
) Une fonction est de Morse si ses pomts critiques sont tous non dégénérés, excellente si
les valeurs critiques sont toutes distinctes.
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critique £ de f, il existe un systtme de coordonnées {¢,...,&x} tel que:

fEL. ) =fO -G - —EG+& .+ +&.

Le nombre k, dénoté par ind(§), est I’indice du point critique £.
Pour tout A € R on note

E) =B = {¢€E|f©) < )\}.

THEOREME 1.1 ([Mil]). Si intervalle [a,b] ne contient aucune valeur
critique de f, alors E° et E* sont difféomorphes.

THEOREME 1.2 ([Mil]). Soient c¢ la seule valeur critique dans l'intervalle
[c —€,c+¢€] et € le point critique correspondant, d’indice ind(§) = i. Alors
E°T€ et E° se rétractent sur I’espace E°~¢U o' que ’on obtient de E°¢ en
attachant a son bord une cellule o = (D',%)) de dimension i.

Pour &,n points critiques de f, tels que ind(§) — ind(n) = 1, on note
[£ : ] T’indice d’incidence des cellules correspondantes.

REMARQUE. Les Théoremes 1.1 et 1.2 sont vrais pour toute fonction
de Morse excellente, des que le champ gradient est défini et intégrable; par
exemple si la condition de Palais-Smale est vérifiée : toute suite {&,},en telle
que Vf(&,) — 0 pour n — oo et {f(£,)}nen est bornée, admet une sous-suite
convergente.

Soit b > 0 un nombre réel assez grand pour que Il’intervalle ]—b,b[
contienne toutes les valeurs critiques de f . On déduit du Théoreme 1.1 que
E* ~ E=% pour A < —b et E* ~ E? pour A > b. On note alors ET> := E+?.

Soit {¢f,...,&5} T'ensemble des points critiques d’indice k de f,
ordonnés selon leur valeur critique: f(£5) < f(&k 1)

DEFINITION. Le complexe de Morse de f est le complexe cellulaire
(Mf , 0y), défini comme suit:
e ]’espace M,{ des chaines de dimension k est I’espace des combinaisons
linéaires formelles sur Q des points critiques d’indice k de f :

#(k)
i (Bt | e} o
=1
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e 1’opérateur de bord?) est ’application linéaire 0O: M,{ — M]{_l définie par

la formule
#(k—1)

ocf == > &6 e
m=1

REMARQUE. D’aprés les Théorémes 1.1 et 1.2, 1’espace E/E~>° est
un espace cellulaire, homotopiquement équivalent au complexe cellulaire
(M!: ,0y). Il s’ensuit que

H,M/,8,) ~ H,(E/[E~*°) ~ H,(E,E~>),

ou H, dénote le complexe d’homologie réduite a valeurs dans Q.

En suivant une idée de Cerf ([Cer]), S. A. Barannikov a montré que ’on
peut “diagonaliser” les complexes de Morse. C’est pour rendre possible cette
diagonalisation que I’on a défini le complexe de Morse sur Q, bien que le
complexe originel soit a coefficients entiers.

LEMME ALGEBRIQUE ([Bar]). Dans chaque M ,{ il existe un changement de
générateurs, représenté par une matrice triangulaire supérieure inversible de
dimension #(k), qui met le complexe de Morse sous forme canonique, c’est-

a-dire que les nouveaux générateurs (ordonnés) {Elé}g’k (¢ = 1,...,#k),
k=1,...,K) vérifient
(1) 0=y =0 ou O=f=3zk",

Démonstration. Par récurrence : supposons que les générateurs E]}f soient

du type (1) pour h=k et j < {, et pour h < k et j € {l,... #h—1)}. Soit
Q Tensemble des indices ¢ tels que Ef~' = 0Zf. pour quelque ¢* < j, et

q
s k— — y . .
P:={1,...,#(k =1}~ Q. Légalité 0¢; il = Zﬁf:ll)@mu,]; I g’écrit donc
k =k ~k .
q€eQ pEP
Si o, = 0 pour tout p € P, le générateur ~J g = Jk+ | quQ g gk* est

canonique, en effet 6L] .1 = 0. Sinon, soit py le plus grand indice dans P
tel que a,, # 0

@) (g~ Y apBh) =ap 2+ Y aEt

qeQ po>pEP

2) Pour la démonstration du fait que 8% = 0, voir [DNF], vol. III, §4.
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k 1._ ,_Jc 1, 1 =k—1 ~
Remplacons le générateur = u I par =241 -+ % > pospep WpZp > qui
est encore de la forme (1), car 8:p0 = E’ljo‘l = 0. L’égalité (2) s’écrit alors
1 < 1 }:a Hk)_Ek—l.
j+ e =q* ] = =po >
Cpg

qeQ

ainsi le générateur

=k . =k
St o= <J+1 E 0B )

q€Q

vérifie 0ZF, | = =l O

REMARQUES.

(1) Tout complexe (avec générateurs ordonnés) admet une forme canonique.
De plus, cette forme est uniquement déterminée par le complexe initial
(voir [Bar]).

(2) Sur les espaces M,{ on peut définir un autre opérateur de bord
§: M] — M]_, par la formule

665 = BELETH &1,

ou 5(55 ,Ek=1) est le nombre (algébrique) de trajectoires intégrales du champ
de vecteurs Y := —Vf/|Vf|* de £ a €. Puisque Iattachement des cellules
o est induit par la rétraction des espaces E* le long des trajectoires intégrales
de Y, ona [£5: €511 £ 0 si et seulement §’il existe (au moins) une trajectoire
de Y entre les deux points critiques correspondants. Ainsi, d’apres le remarque
précédent, les complexes (Mf ,04) et (MI ,04) ont la méme forme canonique.

1.2 POINTS CRITIQUES INCIDENTS, LIES ET LIBRES

Soit (Mf ,0.) le complexe de Morse en forme canonique d’une fonction
de Morse excellente f: E = RX — R. A chaque point critique f’g correspond
le générateur Ef, c’est-a-dire

E’é‘:ZaJ- f}‘, avec oy # 0.

j<e

DEFINITION. On dit que deux points critiques & ’g et &1 de f sont
incidents si [£f : €711 40, liés si 025 = E5-1. Un point critique est libre
s’il n’est 1i€ a aucun point critique.
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DEFINITION.  On appelle diagramme (du complexe) de Morse la représen-
tation suivante du complexe de Morse de f. On considére K + 1 axes réels
verticaux (avec la méme échelle et I’origine a la méme hauteur), numérotés,
de gauche a droite, de K a 0. Sur le i-me axe on considere les points
critiques de f d’indice i, disposés selon leur valeur critique. On joint par un
segment en tirets les couples de points critiques incidents, par un segment
continu les couples de points critiques liés (cf. Figure 1).

FIGURE 1
Diagrammes de Morse de & — £* — €2 4+ ¢

REMARQUES. Considérons un point critique &5 de f.

(1) Les segments qui ont £ comme extrémité sont tous du méme coté de
I’axe ou se trouve &5, car 9* = 0.

(2) Les segments (orientés du point d’indice plus grand vers celui d’indice
plus petit) ont tous pente négative, car si [£f : €511 £ 0 alors f(£5) > f(&& 1.

(3) Un point critique peut €tre une extrémité de plusieurs segments en
tirets, mais d’un seul segment continu (au plus).

PROPOSITION 1.3.  Soit (féf, =1y un couple de points critiques liés. Alors
Ek=1 est le point critique de valeur critique maximale parmi les points critiques
incidents a flg tels que [§]'F : =11 = 0 pour tout j < £ ; f'g est le point critique
de valeur critiqgue minimale parmi les points critiques incidents a €571 tels
que [£f:€71=0 pour tout j > m.

PROPOSITION 1.4.  Un point critique £ est libre si et seulement si pour

tout point critique n incident a &, il existe un point critique &', incident a n,
tel que

[FE) = fm) < [£©) —fm)].
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Les deux propositions sont une conséquence immédiate du choix de I’indice
po dans la preuve du lemme algébrique.

PROPOSITION 1.5. Deux points critiques de f liés le sont aussi en tant
que points critiques de —f.

FIGURE 2
Diagrammes de Morse de & — —(£% — €2 + §)

Démonstration. Un point critique fﬁf de f, d’indice k, est un point critique
de —f, d’indice K — k. Soit ¢ ::f(géf); d’apres le Théoréme 1.2 on a

Eff*~E“Uoy, E{T“~E U .

Or, puisque do§ et 75 %1 sont enchainées, on a [0, 0} '] = +[ry T, 757
(voir [DNF], vol. III, §18). Il s’ensuit que les complexes de Morse de f et de
—f ont les mémes couples de points critiques incidents. Puisque 1’on obtient
le complexe de —f de celui de f par une symétrie qui ne change pas la
pente des segments (cf. Figure 2), la proposition précédente entraine que les
couples de points critiques liés sont les mémes.  []

1.3 LE NIVEAU CRITIQUE DE MINIMAX

Soit maintenant f: E = RX¥ — R une fonction de classe C?, quadra-
tique & linfini, c’est-a-dire f(§) = Qoo(§) pour [£| assez grand, ol Q.
est une forme quadratique non dégénérée d’indice k... On ne suppose pas
nécessairement que f soit de Morse excellente. Pour A € R considérons la
famille d’inclusions naturelles iy: E* < E, qui induit les homomorphismes
0y : H.(E,E~®) — H.(E*,E~*°) des groupes d’homologie relative réduite 2
valeurs en Q.

Comme f est quadratique a l’infini, on a

H.(E,E~*) ~ H,(E/E~®) ~ H,(S%).
Soit T un générateur de Hy_(E,E~*°) ~ Q.
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DEFINITION. On appelle minimax de f le nombre réel

min max(f) := inf{\ € R | i3I # 0} .

REMARQUE. Puisque la topologie des niveaux change au passage de ce
niveau, le minimax est une valeur critique de f.

Dans le cas des fonctions de Morse excellentes, on peut caractériser le
minimax d’une fonction en utilisant la classification de ses points critiques
donnée au §1.2.

THEOREME 1.6. Si f est une fonction de Morse excellente, quadratique
a Uinfini, elle admet un seul point critique libre, d’indice ko, et le minimax
de f est le niveau critique réalisé par ce point.

Démonstration. Soit & un point critique de f, = le générateur corre-
spondant du complexe de Morse en forme canonique. Alors & est libre si et
seulement si

02 =0 et Z¢ oM,

c’est-a-dire si et seulement si = est le représentant d’une classe [Z] non
nulle dans H.(M/,8). D’apres Iisomorphisme H,.(E,E~*) ~ H,(M!,8,)
on déduit qu’il existe un seul générateur E’ém tel que [E’E‘X’] est bien définie
et non nulle dans H,(M! ,0x). Par conséquent, f a un seul point critique

libre, d’indice ko, et le minimax de f est réalis€ par ce point. [

Pour pouvoir utiliser cette caractérisation du minimax il faut se ramener au
cas des fonctions de Morse excellentes, c’est-a-dire des fonctions génériques.
Pour cela il suffit de “déformer” un peu notre fonction.

DEFINITION 1.7.  Une déformation de f est un élément g de CZ(RK:R)

tel que g(§) = f(§) pour |£| assez grand. Une petite déformation de f est
une déformation proche de f pour la norme C2.

THEOREME 1.8. Le minimax est stable par petites déformations de f.

Démonstration.  Soient ¢; < --- < ¢, les valeurs critiques de f, e>0
fixé, assez petit pour que ¢; + € < ¢;1; — € pour tout i = I,....,r—1. Si
g est une déformation de f assez petite, ses valeurs critiques sont contenues
dans la réunion des ensembles Jc; — €, ¢; + €[ (cf. Figure 3).
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C) gl

€1

> RK

FIGURE 3

Petite déformation qui rend générique une fonction non de Morse

Par conséquent, pour tout i, les ensembles E“*¢ et ES*€ sont difféo-
morphes, aussi bien que les ensembles E“~¢ et EZ¢. Il s’ensuit que

H(E) = Ho(EGT),  HJ(E™®) > H(E;™).
Si on pose
Ay = H(E™®), By :=HW(E™), Cp = H(E"*,E~%),
Al = H(E;®), B} :=H(ESTS), Cp = H(EST E;>),
on a les suites exactes longues en homologie relative :
Ay, — By —— C —— A1 — Bp—

o A B 5 |~

Ay, —— By —— G —— A, —— B,
Le “lemme des cinq” bien connu entraine que la fleche . est aussi un
isomorphisme :  Hy(E“"¢,E~>°) ~ H(EGT¢,E;*°). Si on note u = ¢; le
minimax de f, il en résulte que

Hy (E“T,E;°°)#£0 et Hy (EST6,E;®)=0, Vi=1,...,0-1,

donc le minimax de g appartient a ’ensemble Ju —e€,u+ €[, ce qui démontre
le théoreme. [ | |

Le minimax de f admet la construction “duale” naturelle suivante. Soient

E = E:]f , Ja: £ < E la famille d’inclusions naturelles et A un générateur

de Hy_i (E,ET)~Q.
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DEFINITION. On appelle max-min de f le nombre

max min(f) := sup{\ € R | A # 0} = — min max(—f).

THEOREME 1.9. Le minimax de f coincide avec le max-min.

Démonstration. D’aprés le Théoréme 1.8 .on peut supposer f générique,
donc de Morse excellente. Alors on déduit de la Proposition 1.5 que f et —f
ont le méme point critique libre. [

Le résultat suivant sera utile plus loin.

PROPOSITION 1.10. Soit f une fonction excellente, & un point critique
dégénéré de f, de valeur critique c := f(€). Supposons que pour tout € > 0
il existe deux déformations g,h de f telles que:

(1) g et h sont e-proches de f;
(1) g n’a aucune valeur critique dans |c — €,c + €[ ;

(iii) h a deux valeurs critiques, ¢, = f(&}) et ¢; = f(&) dans Jc —€,c + €],
telles que & et & sont non dégénérés.
Alors & et & sont liés.

Démonstration. Le méme argument que pour la preuve du Théoreme 1.8
(ou I'on considere E°™¢ au lieu de E~°°) montre que

H (ESYe ES™) ~ H(ESTS EST).

Or, d’aprés le Théoreme 1.2, on a fl*(Efl+€,Efl_6) = 0. Par conséquent
H *(Eg+6,E;_€) = 0, c’est-a-dire &; et & sont incidents. Il s’ensuit que &; et
& sont liés (Proposition 1.3). [

2. LA SOLUTION DE MINIMAX

2.1 RAPPELS DE GEOMETRIE SYMPLECTIQUE

Soit X une variété différentielle de dimension n, T*X = {(x;y)} 1le fibré
cotangent®) de X, 7: T*X — X la projection naturelle (x,y) — x. Le fibré

T*X, muni de la forme symplectique canonique dy A dx, est une variété
symplectique de dimension 2n.

3) Pas nécessairement trivial.
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On appelle isotopie hamiltonienne*) le flot au “temps” T d’un hamiltonien
h:[0,T] x T*X — T*X.

Deux sous-variétés du fibré cotangent sont isotopes s’il existe une isotopie
qui transforme 'une dans 1’autre. Une sous-variété de T7*X est lagrangienne
si sa dimension est égale a la dimension de la base X du fibré et si la
forme symplectique s’annule sur cette sous-variété. Une isotopie transforme
des sous-variétés lagrangiennes en sous-variétés lagrangiennes.

DEFINITION.  Une famille génératrice (globale) d’une sous-variété lagran-
gienne L du fibré cotangent est une famille de fonctions {S¢: X — R}ecpe,
dépendant des parametres ¢ € RX | telle que:

e la fonction S: X x RX — R, définie par S(x; &) := Se(x), est de classe C?;
o 0 est une valeur réguliere de I’application (x;&) — 0:S(x; ), c’est-a-dire:

rk(@,éS, aéz“xS) |{oes=0y = K-
e la famille engendre la sous-variété lagrangienne

L= {(x, 0, S(x; 5)) |36 e R DeS(x; &) = O} :

Etant donnée une famille génératrice S: X x RE — R d’une sous-variété
lagrangienne, les opérations suivantes permettent de construire une nouvelle
famille génératrice T (de parametres 1) de la méme sous-variété:

(o) Addition d’une constante: si C € R, on pose n = & et T(x;n) =

S8+ C;

(i) Stabilisation: si K' € N et Q est une forme quadratique non dégénérée

de RX', on pose 7= (£,€) et T(;7) = S(x;€) + 0(E);
(i1) Difféomorphisme: si (x;n) — (x,&(x,n)) est un difféomorphisme préser-

vant les fibres du fibré trivial X x RK — X, on pose T(x;n) = S(x; £(x,n)).
On remarque que 1’opération de stabilisation augmente le nombre de parameétres
de la famille génératrice.

DEFINITION. On dit que deux familles génératrices sont équivalentes si
I’on peut obtenir 1’une & partir de ’autre a ’aide d’une suite d’opérations (o),

(1) et (11).

4) Dans la suite on ne considérera que des isotopies hamiltoniennes.
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En fait, il se trouve que si deux familles sont équivalentes, on peut
obtenir 1’une de l’autre par une stabilisation, suivie d’un difféomorphisme
et de 1’addition d’une constante.

DEFINITION.  Une famille génératrice est quadratique a Uinfini (fgqi) sil
existe une forme quadratique non dégénérée Q. telle que S(x;&) = Ouo(§),
pour |£| assez grand.

Les fgqi sont une classe trés importante de fonctions génératrices pour
le résultat suivant d’existence (dii a Sikorav, voir [Sik]) et d’unicité (dl a
Viterbo, voir [Vil], [The]).

THEOREME D’EXISTENCE ET D’UNICITE DE SIKORAV-VITERBO. Si X est
une variété fermée>), toute sous-variété lagrangienne de T*X isotope a la
x € X} admet une fgqi; de plus, toutes les fgqi d’une
telle sous-variété sont équivalentes.

section nulle {(x;0)

REMARQUES.

(1) Le théoreme reste vrai dans le cas des variétés non compactes si
I’isotopie est a support compact ou, ce qui revient au méme, si la variété est
transversale a la base X en dehors d’'un compact, c’est-a-dire si la projection
7 est une bijection entre L et X.

(2) II existe une version de contact (pour les sous-variétés legendriennes
de J'X) du théoreme d’existence de Sikorav, di a Yu. Chekanov ([Chl]),
mais pas, a ma connaissance, pour le théoreme d’unicité de Viterbo.

DEFINITION. ~ Soit X, := {(x,y) € L | tk D7(x,y) < dimX} D’ensemble
des points singuliers de L. La caustique de L est la projection m(X;) sur X
de ’ensemble des points singuliers.

Génériquement, ’ensemble des points singuliers est I’union de la variété
réguliere de codimension 1 des points singuliers simples (ou le rang de Dr
est dimX — 1) et d’une réunion finie de variétés de codimension au moins 3
(voir [Arl]).

On rappelle que L est exacte si la 1-forme de Liouville ydx, restreinte
a L, est exacte, c’est-a-dire s’il existe une fonction (: L — R telle que
ydx|p = d¢. Si c’est le cas, on peut associer & L une sous-variété legendrienne

) Cest-a-dire compacte et sans bord.
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L de ’espace J'X = {(x,z,y)} des jets d’ordre 1 sur X (muni de la forme
de contact standard dz — ydx), définie a une constante en z pres:

L:={(g,¢(q,p)p) | (q,p) € L}.
DEFINITION. On appelle front d’onde ou diagramme de Cerf de L I’'image

Fy de L par la projection (x,z,y) — (x,z) dans 1’espace J°X = {(x,z)} des
jets d’ordre O sur X.

Soit S(x; &) une fgqi de L.

DEFINITION. 1’ensemble de Maxwell M; de L est ’ensemble des points
x € X tels que la fonction de Morse & — S(x; &) n’est pas excellente.

ensemble de Maxwell

caustique

FIGURE 4
Caustique et ensemble de Maxwell d’une courbe lagrangienne et du front associé

REMARQUES.
(1) D’apres le théoreme d’unicité de Viterbo, I’ensemble de Maxwell ne

dépend que de L.
(2) La projection naturelle F; — X est une fibration en dehors de la

caustique et de 1’ensemble de Maxwell (cf. Figure 4).
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(3) L’ensemble de Maxwell d’une sous-variété lagrangienne générique est
une hypersurface stratifiée (c’est-a-dire une réunion finie de variétés lisses, les
strates, connexes par arcs, deux a deux disjointes, telles que la fermeture de
chaque strate est la méme strate et une réunion finie de strates de dimension
plus petite), voir [Ar2]. ’

(4) La caustique et I’ensemble de Maxwell d’une sous-variété lagrangienne
générique ont mesure nulle.

2.2 LA SOLUTION GEOMETRIQUE DE (PC)

Considérons le probléme de Cauchy pour 1’équation de Hamilton-Jacobi
sur une variété Q (sans bord, mais pas forcément compacte) de hamiltonien
H : [0,4+00[xT*Q — R de classe C? dans ]0,+oo[xT*Q et continue au
bord, et donnée initiale uy: Q — R de classe C!:

- {&u(z‘, q) + H(t,q,0,u(t,q)) =0, Y 1>0, g€ 0

u(0,q) = uo(q), VgeQ.

Dans cette section on construit une sous-variété¢ lagrangienne du fibré
cotangent de I’espace temps, la solution géométrique de (PC). Le théoreme
de Sikorav-Viterbo permet de lui associer une “unique” fgqi S(z, q; £). Cette
fonction est définie a une constante additive prés; une fois cette constante
convenablement fixée, S est une solution, en générale multivoque, de (PC).
Son graphe ©)

{(t,9,5(t,4;8) | 9eS(1, 45 ) = 0}
est le front d’onde de la solution géométrique.

Dans la prochaine section on utilisera la méthode de minimax pour choisir
en tout point (f,g) un unique point critique de & — S(z, g; €) ; on obtiendra de
cette maniere une section du front, qui s’avere étre le graphe d’une fonction
bien définie, solution faible de (PC).

Sur le fibré cotangent T°Q = {(q,p)}, muni de la forme symplectique
canonique dp A dg, le champ hamiltonien Xy = (0,H, —0,H) induit le flot
¢: [0, +0o[XT*Q — T*Q. Ses composantes ¢'(g,p) = (§(t), p(t)), que I’on
appelle les caractéristiques de Xy, sont les solutions des équations de Hamilton

{ 43y = B,H(t, §(t), pD))
4p(t) = —8,H(1, §(0), p(r)),
telles que g(0) =g et p(0) = p.

) Plus précisément, le contour apparent du graphe de S, projection le long de I’axe des .
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Soit Ag = {(g,duo(q)) | ¢ € Q} la sous-variété lagrangienne de 7*Q
engendrée par la donnée initiale, et A, := ¢'(Ag) son évoluée au temps ¢.

REMARQUES.

(1) La sous-variété Ay est isotope a la section nulle de 7*(Q, I'isotopie
étant engendrée par I’hamiltonien —uy.

(2) Chaque A, est isotope a la section nulle de 7*Q; en effet A; est
isotope a Ag par I’isotopie ¢, et les isotopies forment un groupe.

(3) Il s’ensuit que A, est exacte et, d’apres le théoreme de Viterbo, admet
une unique fgqi S«(q;§).

Considérons maintenant la variété “espace-temps” Q := R x Q, et son fibré
cotangent 7*Q = {(¢,¢; 7, p)}, muni de la forme symplectique dpAdg-+drAdt.
Le hamiltonien autonome XH(t¢,q;7,p) := 7 + H(t,q,p) engendre le flot
®: [0, 400[xT*Q — T*Q, de composantes

D*(t,q;7,p) = (t+5,4(t + ) 7(t + 5), Bt +9))

ol g,p sont les caractéristiques de Xy telles que g(r) = g et p(t) = p, et
7~-(lk) = _H<t7 Q(t%ﬁ(t)) .
Pour tout ¢ > 0, considérons I’application
i "0 —=T°Q,  (g,p) = (t,q:—H(1,4,p),p).

Un calcul direct montre que la variété que I'on obtient par la réunion des
courbes caractéristiques du flot @, sortant de iy(Ay),

A= ®(io(A) C T*Q,
50
est lagrangienne. De méme, pour tout 7 > 0 fixé, la sous-variét€é de 79
A= | ) @ (io(Ao)
0<s<T
est aussi lagrangienne.

DEFINITION. On appelle A la solution géométrique de (PC), et AT la
solution géométrique tronquée au temps T .

REMARQUE. Pour s fixé, ®° translate A d’un temps s le long les
caractéristiques, c’est-a-dire:
@* (i(Ar) = D 0 D (ig(Ao)) = @7 (io(Ao)) = ste(Asts)

(propriété de semi-groupe du flot).
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THEOREME 2.1. Pour tout T > 0, la solution géométrique tronquée au
temps T est isotope a la section nulle {(t,q;0,0) | —T <t <0,q9 € Q}.

AT

d-T(AT)

FIGURE 5

L’isotopie entre la solution géométrique tronquée et la section nulle

Démonstration. Puisque pour des temps petits 1l existe une solution
classique de (PC), 1l est facile de se ramener, par une isotopie, au cas
ou la solution géométrique A coincide avec la section nulle pour tout temps
inférieur a un certain ¢ > 0 assez petit. Alors pour tout # < ¢ < €, on a
H(t,q,p) = 0. On peut considérer I’extension suivante de H, de classe C?:

H(t,q,p), pour tout t>0, (¢,p) € T*Q,

H(t,q,p) :=
“r 0 pour tout £ <0, (¢,p) € T*Q.

Le flot ® engendré par H := 7+ H étend le flot ® 2 R tout entier. La
sous-variété lagrangienne

A= | @ Gio(A0))
SER

~de T*Q coincide avec A dans le demi-espace {r > 0} et avec la section nulle
~dans {t < O}. Par conséquent, pour tout 7 > 0 fixé, ®~7 est une isotopie
~entre AT et la section nulle (cf. Figure 5). [

| On peut ainsi appliquer le théoréme de Sikorav-Viterbo aux solutions
- géométriques tronquées de (PC).
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COROLLAIRE. Pour tout T > 0 fixé, AT admet une unique fgqi S(t,q;§)
(modulo les opérations d’équivalence (i) et (ii)), telle que son graphe restreint
a t =0 coincide avec le graphe de la donnée initiale uy.

- Dans la suite, S sera toujours une telle fgqi.

Démonstration. Soit S(z, g; &) T'unique fgqi de AT. Or, cette fonction est
une primitive de la forme de Liouville pdg de Ag :

dS(0, q; €0(q)) = duo(q)dq,

ot £y(q) est le seul point critique de € — So(g; €). Par conséquent il existe
une unique constante C telle que § := S+ C vérifie S(0, g; £0(9)) = uo(q)
pour tout g € Q. L[]

REMARQUE. On peut construire une famille génératrice globale de la
solution géométrique A comme suit. La fonctionnelle d’action [ pdq — Hdt
est une famille génératrice formelle (I’espace de parametre étant de dimension
infinie) de A. En utilisant une méthode de point fixe, proposée par Amann-
Conley-Zehnder, on obtient une vraie fonction génératrice, voir [Car].

2.3 LA SOLUTION DE MINIMAX

Soient t > 0,q € Q et S(¢, q; ) la fgqi de la solution géométrique tronquée
AT, pour T > t. La fonction £ +— S(z, g; ) est quadratique a I’infini, donc on
peut lui associer le niveau critique de minimax, étudié au §1.3.

DEFINITION (Chaperon). On appelle solution de minimax de (PC) la
fonction .

u(t, q) := minmax{& — S(t,q; &)} .

REMARQUE. L autre solution que l’on peut construire avec ce méme
argument (cf. [Chal), la solution de max-min est, pour le Théoreme 1.9,
Ia méme solution.

M. Chaperon ([Cha]), T. Joukovskaia ([Jou]), C. Viterbo ([Vi2]) ont étudié
les propriétés de cette fonction; en particulier Joukovskaia a classifi€é les
singularités génériques de u en dimension petite (dimQ < 2).
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THEOREME 2.2 (Chaperon). La solution de minimax est une solution
faible™) de (PC), lipschitzienne sur chaque intervalle compact [0,T], et
indépendante du choix de la fgqi.

REMARQUE. Pour le Théoréme 1.8, on peut supposer, sans perte de
généralité, que la solution géométrique de (PC) soit générique. Dans ce
cas I’ensemble m(X) U M, est de mesure nulle.

Démonstration. Soit A générique. La continuité de la solution de minimax
u est une conséquence immédiate de la stabilit¢ du minimax par petites
déformations. En effet, fixons un point (f, go) de ’espace-temps et un € > 0.
Pour tout (t,q) assez proche de (fp,qo), la fonction £ — S(¢,q;§) est
une perturbation de & — S(f9, go; &) aussi petite que ’on veut. D’apres le
Théoreme 1.8, on déduit que |u(to, qo) — u(t, q)| < €.

Les autres propriétés de la solution de minimax sont simples a démontrer;
on renvoie pour les détails aux travaux déja cités.

Soit (fo,q0) ¢ Ma, to > 0. Par le théoréme de la fonction implicite il
existe un voisinage U de (¢, go) dans ]0, +oo[xQ ou le point critique libre de
£ — S(t,q; €) est une fonction &(¢,q) de classe C', définie par 0:5(t,q;6) = 0.
Alors pour tout (¢,9) € U on a u(t,q) = S(t,q;£(t,g)), donc u est de classe
C!, et vérifie I’équation de Hamilton-Jacobi; en effet

Ou(t,q) = 0:S(t,q;£(t,q)),  Oqult,q) = 8,5(t, q; (1, 9))

et par définition de fgqi on a 0:;5(t, g; &(t,q) + H(, g, 0,5(2, g; £, q)) = 0.
Donc, en dehors de I’ensemble de Maxwell de A, u est dérivable et vérifie
I’équation de Hamilton-Jacobi. La solution de minimax satisfait la donnée
initiale, parce que I’on a choisi la fgqi de la solution géométrique telle que
S0, g; £0(q)) = uo(q), ou &y(g) est le seul point critique de & — S0, q;¢).

Pour tout 0 < T < +o00, u|jo,r est lipschitzienne: en effet H et ug sont
lipschitziens, donc en un temps fini les espaces tangents aux fronts d’onde ne
sont jamais verticaux.

On déduit enfin du théoreme de Viterbo que u ne dépend pas du choix
de S parmi les fgqi de A telles que S(0,q;£() = up(q). [

REMARQUE. Viterbo a montré que les mémes résultats restent vrais
pour hamiltoniens et données initiales seulement lipschitziens, voir [Vi2].
On approche H et up par des suites de fonctions {H,}.en et {ug,}nen,

") Cest-a-dire u est continue et presque partout dérivable, et en ces points vérifie 1’équation
de Hamilton-Jacobi; de plus u satisfait la donnée initiale.
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suffisamment régulieres, convergentes vers H et uy respectivement. Pour
chaque n € N on construit la solution de minimax u, du probleme de Cauchy
de hamiltonien H, et donnée initiale (up,); il suit que la limite lim,_, oo Un
est la solution de minimax du probleme de Cauchy de hamiltonien H et
donnée initiale uy.

3. CARACTERISATION GEOMETRIQUE DE LA SOLUTION DE MINIMAX

3.1 NOTATIONS

Soit J°R = {(g,2)} ~ R? I’espace des jets d’ordre 0 sur R, m: J'R — R
la projection naturelle (g,z) — ¢. Un front d’onde dans J'R est la projection
dans J'R d’une courbe legendrienne de J'R = {(q,z,p)} ~ R® par
m:(q,z,p) — (g,2). Pour un front générique, les seules singularités possibles
sont des cusps et des auto-intersections transverses.

Soit F un front de J°R. On appelle section de F toute partie connexe
maximale o qui est le graphe d’une fonction ., : (o) — R de classe C!
par morceaux. Une branche de F est une section de classe C!.

Un front est long si, en dehors d’un compact de R, il est le graphe
d’une fonction, plat si sa tangente n’est jamais verticale. On peut dans ce
cas coorienter le front en fixant en tout point le vecteur orthonormal dont la
coordonnée en z est positive. Si le front est ainsi orienté, on peut distinguer
deux types de cusp: montant, si en suivant le front, on passe d’une branche
a I'autre en la direction de la normale fixée, descendent si on passe en la
direction opposée.

Deux courbes legendriennes de J!R sont isotopes (par une isotopie
legendrienne) s’il existe un chemin de I'une a I’autre dans 1’espace des courbes
legendriennes plongées de J'R. Pour la famille correspondante de fronts les
perestroikas qui interviennent génériquement sont montrés a la Figure 6;
il s’agit des projections des mouvements de Reidemeister pour les noeuds
relevement des fronts dans I’espace de contact (voir par exemple [Ar3]) : queue
d’aronde (Q), pyramide (P), porte-monnaie (B) et auto-tangence siire®) (J7).

Les auto-tangences dangereuses®) sont interdites car elles correspondent
a un point d’auto-intersection de la courbe legendrienne dont le front est la
projection. Pour un front plat toutes les auto-tangences sont dangereuses.

8) Au point d’auto-tangence la coorientation des deux branches est opposée.
) Au point d’auto-tangence la coorientation des deux branches est la méme.
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FIGURE 6

Singularités permises dans I’isotopie entre deux fronts

Le nombre de cusps d’un front, comptés avec leur signe (positif pour les
cusps montants, négatif pour les cusps descendants), le nombre de Maslov,
est invariant par isotopies legendriennes.

3.2 DECOMPOSITIONS ADMISSIBLES (D’APRES CHEKANOV ET PUSHKAR)

Dans cette section on rappelle brievement la construction d’un nouvel
invariant des nceuds legendriens, dfi a Yu. Chekanov et P. Pushkar, qui permettra
d’établir une caractérisation géométrique de la solution de minimax.

La projection d’un nceud legendrien de J'R dans J°R par 7; est un front
fermé. Soit X un tel front, générique.

On appelle décomposition de % des courbes Xi,...,X, fermées, ayant un
nombre fini d’auto-intersections, telles que pour i # j, X; N X; contient un
nombre fini de points, et X; U---UX, = X.

Un point double x € X;NX; de X est un point de saut si X; et X; ne sont
pas lisses en x, de Maslov si le nombre de cusps (comptés avec leur signe)
qui séparent le long du front les deux branches se coupant en x est 0.

DEFINITION.  Une décomposition (X,...,X,) de T est admissible si:
(1) chaque X; est homéomorphe au bord d’un disque: 0X; = B; ;
(2) pour tout i € {1,...,n}, g € R, I’ensemble

Bi(q) :={z€ R | (g,2) € B;}

est connexe; en particulier si ¢’est un point, ce point est un cusp du front;
(3) st (q0,2) € Xi N X; (i # j) est un point de saut alors pour g # g,

assez proche gqo, I’ensemble B;(g) N Bi(g) est soit B;(q), soit Bi(g), soit vide;
(4) les points de sauts sont tous de Maslov.
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REMARQUES.

(1) II suit des conditions (1) et (2) que chaque courbe X; a exactement
deux cusps, qui divisent la courbe en deux parties, que 1’on note o;f et o
(avec la convention suivante : pour tout (g,z:") € o générique, on a z;~ < z;").

(2) La condition (3) équivaut a demander qu’aucun point de saut ne réalise
I’une des configurations interdites montrées a la Figure 7.

_|_

CF o p v = s g 5 v e g 0 s s s
aj+ N i .

oit R P T, o . P

/\ . /\ + /\
_ 7 _ 7 GJ—

(O e (O R e
O'j_
4] 1)) (IIT)

FIGURE 7

Configurations interdites autour des points de saut

Notons par #(D) le nombre de courbes X; et par #(S) le nombre de points
de saut dans une décomposition admissible D du front X.

THEOREME DE CHEKANOV-PUSHKAR ([Ch2], [C-P]). Le nombre de
décompositions admissibles d’un front projection d’un nceud legendrien est
invariant par isotopies legendriennes du neeud; de plus, le nombre #(D)—#(S)
est constant le long de [l’isotopie.

EXeEMPLE 3.1. La Figure 8 montre deux décompositions d’un front
générique, projection d’un nceud legendrien. Le front est isotope au front
levre (le front ayant deux cusps et aucune auto-intersection), donc; d’apres le
théoreme de Chekanov-Pushkar, la décomposition (1) est la seule admissible.

(1) (2)

FIGURE 8
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3.3 CARACTERISATION GEOMETRIQUE DU MINIMAX

Revenons au probléme de Cauchy (PC), notamment dans le cas O=R:

Ou(t,q) + H(t,q,0qu(t,q)) =0, V1>0,g€R

Fixons f, > 0. Soit S(¢, ¢; £) une fgqi de la solution géométrique A de (PCR)
(ou, plus précisément, une fgqi de la solution géométrique tronquée AT, avec
T > ty). D’apres le théoréme d’unicité de Viterbo, S;(g;&) = S(t0,q;¢&)
est la fggqi de A, = ANT*{t} x R); il s’ensuit que les solutions de
minimax associées a2 A et A, ont la méme valeur aux points (f,go) et go
respectivement, 2 savoir minmax{& — S(t,q0;&)}.

(PCR) {

DEFINITION.  On appelle solution multivogue un front de J°R long plat,
isotope au front nul {(g,0) € J°R}, projection d’une courbe legendrienne
(plongée) transversale a la base en dehors d’un compact.

Dans la suite on suppose ces fronts orientés par 1’orientation induite par
la premigre composante de J'R. Il résulte des sections 2.2 et 2.3 que le front
d’onde de A, , graphe de S;,, est de type solution multivoque.

REMARQUE. Le théoreme d’unicit¢ de Viterbo permet de ramener le
probleme de déterminer la solution de minimax d’un probleme de Cauchy
(PC) quelconque au cas Q = R. En effet, considérons la solution A’ du
probléme général. Soient S(z,q; ) sa fgqi et F le front d’onde de AT, graphe
de S. Si «y est une courbe lisse, paramétrée par R 3 s — v(s) €]0, T[xQO et
sans aucun point singulier, la restriction A, de la solution géométrique au
fibré cotangent de -y est une sous variété lagrangienne. Une fois identifié -~y
a R, (5,8) = S(v(s);§) est la fgqi de A, C T*R (théoréme d’unicité); son
graphe F., coincide avec la restriction de F a J% ~ J°R. Donc pour tout
s € R, le minimax de F, au point s est égal au minimax de F au point (s).

De plus, on peut choisir v de manicre que F., soit un front de type solution
multivoque. En effet F, est plat car F I’est. Pour que F. soit long, on peut
choisir v comme suit: si Q = R" on prend n’importe quelle droite d dans
{to} x Q; sinon on choisit pour ~ une courbe telle que y(+oo) € {0} x Q.
Pour montrer que le front F., est isotope & un front qui est le graphe d’une
fonction (et donc au front nul), considérons dans 1’espace des courbes lisses
dans ]0, T[xQ sans singularités un chemin {v,} entre vp =~y et y; = {0} xd
dans le premier cas et entre -y et une courbe contenue en ¢ = 0 dans le second
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(voir la Figure 9). Alors pour tout chemin générique de ce type, {F, } est

I’isotopie cherchée 1°).
O> t
T
FIGURE 9

Réduction au cas unidimensionnel (dans le cas Q = S')

Q0 =Ss! Q

Dans la suite on va donc étudier le minimax d’un front d’onde de J°R
de type solution multivoque, graphe d’une fgqi S(g;&). Nous allons donner
I’équivalent global (pour tout g € R) de la subdivision des points critiques
de & — S(g; &) (pour chaque g € R fixé) en point critique libre et couples de
points critiques li€s. La section du front parcourue par le point critique libre
de S lorsque ¢ parcourt R est le graphe de la solution de minimax.

Pour utiliser le théoreme de Chekanov et Pushkar il faut fermer le front en
ajoutant une section a I’infini. Ce nouveau front est le graphe d’une fonction
qui n’a aucun point critique libre. Lorsque g parcourt R, chaque couple
de points critiques li€s parcourt sur le front une courbe fermée (ayant deux
cusps). Ces courbes fermées sont la seule décomposition admissible du front;
en particulier une de ces courbes est formée par le graphe de la solution de
minimax et la section a I’infini. Par conséquent, étant donné un front de type
solution multivoque, on peut déterminer le graphe de la solution de minimax
a I’aide de la décomposition admissible de ce front.

Soit o une branche de F'; d’apres le théoreme de la fonction implicite il
existe une application lisse &, : mo(a) — RE telle que o soit le graphe de
g — S(to, q;€4(q)). Pour tout point ¢ a l'intérieur de mo(cr), £,(g) est un
point critique non dégénéré de S. Son indice ind(£(g)) ne dépend pas de g.
On appelle indice de « le nombre (indépendant du choix de §) ind(£(q)) — koo
(ou ko est I’indice de la forme quadratique de S§).

10) Cela n’est pas vrai en général pour tout chemin: un front F., pourrait avoir des auto-
tangences, qu’on peut faire disparaitre par une perturbation arbitrairement petite du chemin,
puisque le front F n’a pas d’auto-tangences.
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En tout point générique g € R, considérons les couples de points critiques
liés de & — S(g;€). Si le front est générique et si 2n est le nombre de
cusps de F, cela définit 2n sections (afr g7y Jgasny (o.f,0,), prolongées par
continuités aux points non génériques. On pose X; :=o;" Uo; .

Le front F n’est pas la projection d’un nceud de J'R; pour se ramener a
cette situation il faut “fermer” le front en ajoutant deux cusps et une section a
Iinfini o, (plate), comme a la Figure 10. On note F ce front, qui coincide

FIGURE 10

Le front F , compactification de F

avec F dans un rectangle R de J°R contenant toutes les branches bornées
de F (comme le minimax coincide avec le max-min, on obtient les mémes
résultats si la branche a I’infini passe au dessous de R). Ce nouveau front
est la projection par m; d’un nceud legendrien L de J'R. On fixe sur F
I’orientation induite par celle de F.

Soit u la solution de minimax de (PCR). La section de Chaperon-Sikorav,
notée ocs, est la section de F qui coincide avec le graphe du minimax a
I'intérieur de R. Soit X := 0, Uocs. 1l est facile de voir que (Xo, X3, ...,X,)
est une décomposition de F.

THEOREME 3.2. La décomposition (Xy, X1, . ..,X,) est la seule admissible.

Démonstration. D’apres la section 1.2, les courbes Xy, X, ..., X, satisfont
les axiomes (1) et (2) des décompositions admissibles. La condition (4) est
aussi vérifiée parce que la différence d’indice de deux branches est égal au
nombre de cusps (comptés avec leur signe) qui les séparent le long du front
(Proposition 1.10).

Il reste a montrer que la condition (3) est satisfaite, ce qui revient 2
montrer que les configurations interdites (I), (I) et (II) de la Figure 7 ne
se produisent jamais. Pour toute courbe X; = o;" Uo;, et g a I'intérieur de
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mo(X;), on note (q,&) € o et (q,&") € o , avec &M > &7, les deux
points de X; au dessus de g ; pour Xy = 0o U0ocs, On note (g, €s) € 0o €t

(q,&e) € ocs , avec € > &y

» &

ind(o;”) = ind(e;") ind(o])

FIGURE 11
Diagramme de Morse correspondant a la configuration interdite (I)

Soient S un point de saut, gs := m(S), g # qs assez proche de gs.
Supposons d’abord que S € X; N X;, avec i # j non nuls. Les diagrammes
de Morse de S correspondant aux configurations interdites (I), (II) et (III)
contredisent la Proposition 1.3, comme le montrent la Figure 11 pour la
configuration (I) et la Figure 12 pour les configurations (II) et (III).

ind(o;") = ind(o}")

gs q
ind(c;™) = ind(aj+)

FIGURE 12
Diagrammes de Morse des configurations interdites (II) et (III)

Puisque o, n’a aucun point de saut, il reste les sauts de type S € ocsNX;,
avec i > 0. Comme on suppose que la section a I’infini 0., passe au dessus
des autres sections de F , la configuration (III) ne se produit jamais. Les
configurations (I) et (I) conduisent encore a des diagrammes de Morse qui
contredisent la Proposition 1.3, voir la Figure 13.
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FIGURE 13

Diagrammes de Morse des configurations interdites (I) et (II)

On a ainsi démontré que notre décomposition est admissible. Comme Ila
courbe legendrienne L dont F est la projection est isotope & {(g,0,0) € J'R},
F est isotope au front lévre. Ce front a une seule décomposition admissible,
donc par le théoreme de Chekanov-PushkKar, F aussi admet une unique
décomposition admissible. [

REMARQUES.

(1) Le Théoreéme 3.2 fournit un critére géométrique purement combinatoire
qui permet de déterminer la solution de minimax d’un front d’onde (de type
solution multivoque) de dimension 1: il suffit pour cela de trouver la seule
décomposition admissible d’une compactification du front. La section associée
a la section a l’infini est alors la section de Chaperon-Sikorav du front
compactifié, ce qui détermine sans ambiguité le graphe de la solution de
minimax sur le front initial.

(2) Les axiomes qui définissent les décompositions admissibles d’un front
d’onde ont été définis par Chekanov et Pushkar comme généralisation de
la classification des points critiques d’une fonction de Morse en couple de
fonctions critiques liés. En ce sens le Théoréme 3.2 est le cas simple dont le
théoréme de Chekanov et Pushkar est la généralisation.

EXEMPLE 3.3. D’apres ’exemple 3.1, le graphe de la solution de minimax
associée au front montré a la Figure 14 est la section marquée par un trait
plus épais.

3.4 TRIANGLES EVANESCENTS

Dans cette section on donne une méthode qui permet de remplacer un
front d’onde de type solution multivoque par un front plus simple du méme
type et ayant le méme minimax. Cela permet de déterminer le minimax du
front initial en itérant cette méthode un nombre fini de fois.
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FIGURE 14

Soit {Fr}rG[O,l] une famille a un parametre de fronts de type solution
multivoque, projection d’une isotopie legendrienne {L,},¢(0,1)-

DEFINITION. On appelle intersection triple une perestroika de {F,},c(0,1]
de type “pyramide” (P), telle que le point triple soit I’intersection de trois
branches de méme indice.

REMARQUE. D’apres la définition de décomposition admissible, la seule
perestroika de la famille {F,},cj01; qui change de maniére non continue
I’unique décomposition admissible du front initial est 'intersection triple
(Figure 15).

FIGURE 15

Changement de la décomposition admissible en passant par une intersection triple

Considérons maintenant le front ' comme la trace d’une courbe I'" de
R? = J°R, paramétrée par s € R. Soit D = I'(so) = I'(sy), avec so < §1,
un point double du front, intersection de deux branches de méme indice.
L’ensemble I'([so,s:1[) est un triangle de sommet D s’il a exactement deux
cusps. On note alors T(D) un tel triangle et, pour ¢ > 0 aussi petit que
I’on veut, F — J(D) un front de type solution multivoque qui coincide avec
I’ensemble T(R \ [so,s:[) en dehors de la boule Bp(e) de R? centrée en D
de rayon €, et qui est le graphe d’une fonction lisse a 1’intérieur de cette
boule (cf. Figure 16).
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le front F — T (D)

FIGURE 16
Le front F — T(D)

DEFINITION.  Un triangle T(D) de sommet D est évanescent s’il existe
un chemin sans intersections triples entre F et F — T(D) dans I’espace des
solutions multivoques.

EXEMPLE 3.4. Considérons le front de l’exemple 3.3, montré a la
Figure 14. Les triangles T(P) et J(Q) sont évanescents, tandis que le triangle
T(R) ne l’est pas (en effet pour D'effacer il faut forcément passer par une
intersection triple au point §).

Soit D = {Xo, - .., X, } la décomposition admissible d’une compactification
F d’un front de type solution multivoque F.

THEOREME 3.5. Si n > 1, au moins une des courbes X;, avec i > 0, est
un triangle évanescent.

Démonstration. Considérons le graphe (connexe) associ€é a la décompo-
sition admissible de F = (L), c’est-a-dire le graphe ayant un sommet pour
chaque courbe X; € D et une aréte entre deux sommets pour chaque point
de saut entre les courbes correspondantes. D’apres le théoreme de Chekanov-
Pushkar, le nombre #(D) — #(8) est invariant par isotopie legendrienne de
L. Puisque L est isotope a un cercle dont la projection est le front levre,
ce nombre est toujours 1 pour les fronts obtenus par compactification d’une
solution multivoque. Or, #(D) étant le nombre de sommets et #(8) le nombre
d’arétes du graphe, on déduit que ce graphe est un arbre, dont les feuilles!!)
sont des triangles. Enfin, il est facile de voir que les triangles qui forment
une courbe X; € D (i > 0) sont évanescents. ]

1Y Les feuilles d’un arbre sont les sommets dont est issue une seule aréte.
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De toute évidence on a le fait suivant.

PROPOSITION 3.6. Si un triangle T(D) est évanescent, alors les sections
de minimax de F et de F — T(D) coincident en dehors de Bp(e).

REMARQUE. La Proposition 3.6 donne une méthode pour simplifier
récursivement le front d’onde dont on cherche le minimax: on recherche
parmi les triangles du front ceux qui sont évanescents. Aprés un nombre fini
de pas, on efface tous les cusps du front; la section restant coincide, en dehors
d’un nombre fini de boules arbitrairement petites, avec le minimax du front
initial.

EXEMPLE 3.7. Considérons le front générique F de type solution multi-
voque montré a la Figure 17. A c6té de chaque branche on a noté son indice.
La solution de minimax est la section mise en évidence.

FIGURE 17

Pour montrer cela, on applique la Proposition 3.6: les triangles T(G) et
T(E) sont évanescents (pour le premier c’est clair, pour le deuxieme, il faut
remarquer que la branche d’indice —1 de ce triangle peut traverser les points
A, B et C). Donc en dehors de deux boules aussi petites que ’on veut,
centrées en G et en E, les sections de minimax de F et de F — T (G) — T(E)
sont les mémes (voir la Figure 18). Les triangles J(A) et T(D) du nouveau
front sont de toute évidence évanescents, ce qui prouve que le minimax est
bien celui annoncé.
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FIGURE 18
Le front F — T(G) — T(E)
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