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CARACTÉRISATION GÉOMÉTRIQUE DES SOLUTIONS DE MINIMAX
POUR L'ÉQUATION DE HAMILTON-JACOBI

par Gianmarco Capitanio*)

Abstract. The minimax solution is a weak solution of a Cauchy problem for the
Hamilton-Jacobi equation, constructed from a generating family (quadratic at infinity)
of its geometric solution. In this paper we give a new construction of the minimax in
terms of Morse theory, and we show its stability by small perturbations of the generating
family. Then we show that the max-min solution coincides with the minimax solution.
Finally, we consider the wave front corresponding to the geometric solution as the
graph of a multi-valued solution of the Cauchy problem, and we give a geometric
criterion to find the graph of the minimax.

Introduction

En 1991 Marc Chaperon a proposé, dans [Cha], une méthode géométrique

pour construire des solutions faibles du problème de Cauchy pour l'équation
de Hamilton-Jacobi :

Çpc^
f dtu(t, q) + H(t, q, dqu(t, q)) 0 pour tout f > 0, q eQ,
[w(0, q) uo(q), pour tout q G ß

de hamiltonien H et donnée initiale u0 sur une variété fermée Q.
La méthode classique des caractéristiques conduit, d'après une idée

de Maslov, à considérer comme solution généralisée de (PC) une sous-
variété lagrangienne du fibré cotangent de l'espace-temps R x Q, la solution
géométrique.

La "projection" de la solution géométrique dans l'espace des jets d'ordre 0

sur Q est, en général, le graphe d'une fonction multivaluée. La méthode de
minimax permet de déduire une "vraie" fonction à partir de cette solution multi-

*) Recherche soutenue par l'Istituto Nazionale di Alta Matematica "F. Severi".



4 G. CAPITANIO

valuée. L'outil principal dans cette construction sont les familles génératrices

quadratiques à l'infini des sous-variétés lagrangiennes. Le théorème d'existence
et d'unicité de ces familles permet d'associer à chaque point de l'espace-temps
une fonction, quadratique à l'infini dans les paramètres (la famille génératrice
évaluée en ce point), dont on considère la valeur critique de minimax. La
fonction ainsi définie s'avère être une solution faible lipschitzienne de (PC),
la solution de minimax.

Ce travail est divisé en trois parties.
Dans la première partie on présente une nouvelle construction de la valeur

critique de minimax d'une fonction quadratique à l'infini, basée sur la théorie
de Morse. Cette construction permet de caractériser de manière simple le

minimax d'une fonction générique parmi les fonctions quadratiques à l'infini
en termes du complexe de Morse associé. Le résultat principal de cette partie
est la stabilité de la valeur critique de minimax par petites déformations de

la fonction.
Dans la deuxième partie on rappelle la construction de la solution

géométrique de (PC) et on démontre que toute solution géométrique est

isotope, pour temps finis, à la section nulle du fibré cotangent; elle admet

donc une unique famille génératrice quadratique à l'infini S(t, q\ £). La solution
de minimax est, en tout point fixé (to > 0,go) de l'espace-temps, le minimax
de la fonction génératrice quadratique à l'infini, minmax{£ t-A S(to, qo\0} • La
stabilité par petites déformations donne une preuve nouvelle (géométrique) de

la continuité de cette solution. On montre aussi que la solution de max-min,
définie de manière analogue, coïncide avec celle de minimax.

Dans la troisième partie on montre comment réduire le problème de

déterminer la solution de minimax associée à un front d'onde (graphe d'une
fonction multivaluée) de dimension quelconque au cas d'un tel front de

dimension 1. Un théorème récent de Chekanov et Pushkar ([Ch2], [C-P])

permet alors d'établir un critère géométrique purement combinatoire pour
déterminer le graphe de la solution de minimax directement sur le front d'onde.

Remerciements. Plusieurs personnes m'ont aidé pendant la réalisation

de ce travail: je les remercie très chaleureusement. Franco Cardin et Marc

Chaperon m'ont introduit à ce sujet et m'ont posé le problème initial; ils

ont suivi toujours avec intérêt ma recherche. Notamment, sans le soutien de

Franco Cardin, la suite n'aurait pas été possible. Je dois à Emmanuel Ferrand

les références [Bar], [Ch2] et [C-P] : il m'a expliqué le théorème de Chekanov-

Pushkar et m'a suggéré de l'utiliser dans mon travail. Enfin, sans l'aide de

Yuri Chekanov, le Théorème 3.5 serait encore une conjecture.
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1. Minimax d'une fonction quadratique à l'infini

1.1 Préliminaires

Soient X un espace topologique, Dn un disque de dimension n, orienté,

et iß: S"-1 —X une application. On considère sur S"-1 dDn l'orientation
induite. On appelle cellule de dimension n le couple an := (Dn,tß). L'espace

que l'on construit en identifiant chaque point x de Sn_1 au point iß(x) est

obtenu en attachant à X la cellule an ; on le note XU an ou bien XU^ Dn.

Un espace est dit cellulaire s'il est obtenu par l'attachement de cellules

(un nombre fini pour chaque dimension) à un nombre fini de points (cellules
de dimension 0). Un espace cellulaire X est un complexe cellulaire si chaque
cellule est attachée à une cellule de dimension plus petite.

Il est bien connu que tout espace cellulaire est homotopiquement équivalent
à un complexe cellulaire, voir par exemple [DNF], vol. III, §4.

Soit X un complexe cellulaire. La réunion des cellules de dimension k < n
est appelée squelette cellulaire de dimension n, que l'on note Xn. On a alors
la suite des squelettes emboîtés

X° C • • • C Xk C • • • C X.

L'espace quotient Xk~l/Xk~2, où Xk~2 est identifié à un point, est un bouquet
de sphères de dimension k - 1. Considérons une cellule ak (Dk, iß) et

l'application

dDkS*"1 ——»Xk~l — Xk~l/Xk~2 —Sf"1,
où 7T,- est la projection sur la i -ème sphère du bouquet. Soit of-1 la cellule
de X correspondant à la sphère Sf-1.

DÉFINITION. On appelle coefficient d'incidence du couple de cellules
crk,ak~l le nombre entier

[ak:of"1] := deg(^;).

Soient E— et / : E->R une fonction de Morse excellente1 avec un
nombre fini de points critiques. D'après le lemme de Morse, autour d'un point

1

Une fonction est de Morse si ses points critiques sont tous non dégénérés, excellente si
les valeurs critiques sont toutes distinctes.
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critique £ de /, il existe un système de coordonnées {£1, tel que:

THÉORÈME 1.1 ([Mil]). Si l'intervalle [a,b] ne contient aucune valeur

critique de f, alors Eb et Ea sont difféomorphes.

THÉORÈME 1.2 ([Mil]). Soient c la seule valeur critique dans l'intervalle
[c — c,c + e] et £ le point critique correspondant, d'indice ind(£) i. Alors
Ec+e et Ec se rétractent sur l'espace Ec e U a1 que l'on obtient de Ec e en

attachant à son bord une cellule a1 — (D\$) de dimension i.

Pour £,77 points critiques de /, tels que ind(£) — ind(Ty) 1, on note

[£ : 77] l'indice d'incidence des cellules correspondantes.

Remarque. Les Théorèmes 1.1 et 1.2 sont vrais pour toute fonction
de Morse excellente, dès que le champ gradient est défini et intégrable; par
exemple si la condition de Palais-Smale est vérifiée: toute suite {£,7}/2gn telle

que Vf(tin) —^ 0 pour n—ï 00 et {/(^)}«gn est bornée, admet une sous-suite

convergente.

Soit b > 0 un nombre réel assez grand pour que l'intervalle ]—b,b[
contienne toutes les valeurs critiques de / On déduit du Théorème 1.1 que
Ex ~ E~b pour À < — b et Ex ~ Eb pour À > b. On note alors E±0° := E±b.

Soit {£1, •• ,£#(&)} l'ensemble des points critiques d'indice k de /,
ordonnés selon leur valeur critique : /(£*)

DÉFINITION. Le complexe de Morse de / est le complexe cellulaire

(M*,ô*), défini comme suit:

• l'espace m[ des chaînes de dimension k est l'espace des combinaisons

linéaires formelles sur Q des points critiques d'indice k de / :

EfX=Ex K C E|/(0< A}.
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• l'opérateur de bord2) est l'application linéaire d: m[ -a m[_x définie par
la formule

#(k— t)

E : ^ •

m=l

Remarque. D'après les Théorèmes 1.1 et 1.2, l'espace E/E~°° est

un espace cellulaire, homotopiquement équivalent au complexe cellulaire

(Af{,9*). Il s'ensuit que

*(M{, 9*) a H,(E/E-°°) - //*(£, £-°°),
où 7/* dénote le complexe d'homologie réduite à valeurs dans Q.

En suivant une idée de Cerf ([Cer]), S.A. Barannikov a montré que l'on
peut "diagonaliser" les complexes de Morse. C'est pour rendre possible cette

diagonalisation que l'on a défini le complexe de Morse sur Q, bien que le

complexe originel soit à coefficients entiers.

LEMME ALGÉBRIQUE ([Bar]). Dans chaque m[ il existe un changement de

générateurs, représenté par une matrice triangulaire supérieure inversible de

dimension #(k), qui met le complexe de Morse sous forme canonique, c'est-
à-dire que les nouveaux générateurs (ordonnés) {S*}^ (£ l,...,#(k),
k — 1,..., K) vérifient

(1) 92^ 0 ou

Démonstration. Par récurrence : supposons que les générateurs 2soient
du type (1) pour h— ket j <£, et pour h < k et {1,... - 1)}. Soit
Q l'ensemble des indices q tels que Zkq"1 dZkq, pour quelque q* et

P :m{1,,,. ,#(£- 1)} \ Q. L'égalité 9£*+1 EmîEs'écrit donc

«eß pep

Si ap 0 pour tout p e P, le générateur Zf+1 := est

canonique, en effet 92*+, 0. Sinon, soit p0 le plus grand indice dans
tel que aPo ^ 0 :

c> »(&, - E<v4) 1 + E <*&-'
Po>pEP

2) Pour la démonstration du fait que d2 0, voir [DNF], vol. III, §4.
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Remplaçons le générateur Ekpo
1

par Ekpo
1 := 1 + T,po>Pep apEt> '

> qui

est encore de la forme (1), car dEp~l dEkp~l 0. L'égalité (2) s'écrit alors

P0 qQ
ainsi le générateur

+1 := (^+1
Po qeQ

vérifie dEk+l Ek~l.

Remarques.
(1) Tout complexe (avec générateurs ordonnés) admet une forme canonique.

De plus, cette forme est uniquement déterminée par le complexe initial
(voir [Bar]).

(2) Sur les espaces m[ on peut définir un autre opérateur de bord
S : m[ -4 m(_ j par la formule

m

où ß(£k, ^k~1 est le nombre (algébrique) de trajectoires intégrales du champ
de vecteurs F := —V//| V/j2 de à Puisque l'attachement des cellules
ak est induit par la rétraction des espaces Ex le long des trajectoires intégrales
de F, on a [£* : £*-1] / 0 si et seulement s'il existe (au moins) une trajectoire
de F entre les deux points critiques correspondants. Ainsi, d'après le remarque
précédent, les complexes (M{,<9*) et ont la même forme canonique.

1.2 Points critiques incidents, liés et libres

Soit (Af{,9*) le complexe de Morse en forme canonique d'une fonction
de Morse excellente / : E -4 R. A chaque point critique £* correspond
le générateur Ek, c'est-à-dire aJ$> avec a^°

J<C

Définition. On dit que deux points critiques et de / sont

incidents si [£* : £^_1] ^ 0, liés si <9S^ Un point critique est

s'il n'est lié à aucun point critique.
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Définition. On appelle diagramme (du complexe) de Morse la représentation

suivante du complexe de Morse de /. On considère K + 1 axes réels

verticaux (avec la même échelle et l'origine à la même hauteur), numérotés,

de gauche à droite, de K à 0. Sur le i -ème axe on considère les points

critiques de / d'indice /, disposés selon leur valeur critique. On joint par un

segment en tirets les couples de points critiques incidents, par un segment

continu les couples de points critiques liés (cf. Figure 1).

Remarques. Considérons un point critique de /.
(1) Les segments qui ont comme extrémité sont tous du même côté de

l'axe où se trouve car d2 0.

(2) Les segments (orientés du point d'indice plus grand vers celui d'indice
plus petit) ont tous pente négative, car si : Cm-1] 7^ 0 alors f(0) >/(£m~1)-

(3) Un point critique peut être une extrémité de plusieurs segments en

tirets, mais d'un seul segment continu (au plus).

Proposition 1.3. Soit (^,Cm_1) un couple de points critiques liés. Alors
est le point critique de valeur critique maximale parmi les points critiques

incidents à 0 tels que [£ : 1] 0 pour tout j < i ; est le point critique
de valeur critique minimale parmi les points critiques incidents à 1 tels

que [£* :
1

] 0 pour tout j > m.

PROPOSITION 1.4. Un point critique £ est libre si et seulement si pour
tout point critique 77 incident à il existe un point critique incident à rj,

0

Figure 1

Diagrammes de Morse de £ M- £4 — £2 + £

tel que

\m') ~m\ < 1/(0 -/(oi •
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Les deux propositions sont une conséquence immédiate du choix de l'indice
Po dans la preuve du lemme algébrique.

PROPOSITION 1.5. Deux points critiques de f liés le sont aussi en tant
que points critiques de —f.

Démonstration. Un point critique ^ de /, d'indice k, est un point critique
de —/, d'indice K — k. Soit c :==/(£f) ; d'après le Théorème 1.2 on a

Or, puisque dcr\ et dr^~k+l sont enchaînées, on a [crj, c^_1] ±[rjf~l+l, TjK~1]

(voir [DNF], vol. III, § 18). Il s'ensuit que les complexes de Morse de / et de

—f ont les mêmes couples de points critiques incidents. Puisque l'on obtient
le complexe de —f de celui de / par une symétrie qui ne change pas la

pente des segments (cf. Figure 2), la proposition précédente entraîne que les

couples de points critiques liés sont les mêmes.

1.3 Le niveau critique de minimax

Soit maintenant /: E —> R une fonction de classe C2, quadratique

à l'infini, c'est-à-dire /(£) Qoo(0 Pour ICI assez grand, où goo

est une forme quadratique non dégénérée d'indice k^. On ne suppose pas
nécessairement que / soit de Morse excellente. Pour À G R considérons la

famille d'inclusions naturelles i\ : Ex s- E, qui induit les homomorphismes
i*x : H^(E,E~°°) —> H*(EX,E~°°) des groupes d'homologie relative réduite à

valeurs en Q.
Comme f est quadratique à l'infini, on a

o

Figure 2

Diagrammes de Morse de £ i-»- — (£4 — £2 + £)

Ep ~ Ep U a\, EZp ^ ETjp U

H,(P,E-°°) ~ H.(E/E-°°) ~ H,(S

Soit r un générateur de Hk^iE.E-00) ~ Q.
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Définition. On appelle minimax de / le nombre réel

minmax(/) := inf{À G R | IJT / 0}

Remarque. Puisque la topologie des niveaux change au passage de ce

niveau, le minimax est une valeur critique de /.

Dans le cas des fonctions de Morse excellentes, on peut caractériser le

minimax d'une fonction en utilisant la classification de ses points critiques
donnée au §1.2.

THÉORÈME 1.6. Si f est une fonction de Morse excellente, quadratique
à l'infini, elle admet un seul point critique libre, d'indice koo, et le minimax
de f est le niveau critique réalisé par ce point.

Démonstration. Soit £ un point critique de /, 5 le générateur
correspondant du complexe de Morse en forme canonique. Alors £ est libre si et

seulement si

öS 0 et S ^ dMf

c'est-à-dire si et seulement si S est le représentant d'une classe [S] non
nulle dans D'après l'isomorphisme H*(E,E~°°) ~ if*(M{,ö*)
on déduit qu'il existe un seul générateur S^°° tel que [S^°°] est bien définie
et non nulle dans /7*(M*,ö*). Par conséquent, / a un seul point critique
libre, d'indice km, et le minimax de / est réalisé par ce point.

Pour pouvoir utiliser cette caractérisation du minimax il faut se ramener au

cas des fonctions de Morse excellentes, c'est-à-dire des fonctions génériques.
Pour cela il suffit de "déformer" un peu notre fonction.

Définition 1.7. Une déformation de / est un élément g de C2(R^;R)
tel que #(£) =/(£) pour |£| assez grand. Une petite déformation de / est
une déformation proche de / pour la norme C2.

THÉORÈME 1.8. Ee minimax est stable par petites déformations de f.
Démonstration. Soient c\ < • • • < cr les valeurs critiques de /, e > 0

fixé, assez petit pour que ct + e < ci+ï - e pour tout i — 1,..., r - 1. Si

g est une déformation de / assez petite, ses valeurs critiques sont contenues
dans la réunion des ensembles ]q - e, c,- + e[ (cf. Figure 3).
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R

Figure 3

Petite déformation qui rend générique une fonction non de Morse

Par conséquent, pour tout z, les ensembles ECiJre et Ec^e sont difféo-
morphes, aussi bien que les ensembles ECi~e et Ec^~e. Il s'ensuit que

^ A(^i+e), A(£"°°) a
Si on pose

Ak:= //.(ZT°°), Bt := fft(£c'+e), C* := Ä*(£c'+e, E"00),

:= B'k := ff*(£?+£), Ct := A(^i+e, E,"00),

on a les suites exactes longues en homologie relative:

Ajk » Bk » Ck > Ak- i » Bk~ i

I
A Bk —> ck ^ A^_i —>-

"l •1 i-
a K ——> cl - Afc-i —^••• 4 > 4 > G > 4-i > 4-i •••

Le "lemme des cinq" bien connu entraîne que la flèche 4. est aussi un

isomorphisms: //^(^Q+e^-00) — Hk(Ecgi+e,E~°°). Si on note u q le

minimax de /, il en résulte que

Hkoo{Eug+\E-°°)̂ 0et AM(4i+e43-°°) 0, Vi=l,...^-1,
donc le minimax de g appartient à l'ensemble ]m — e, w + e[, ce qui démontre

le théorème.

Le minimax de / admet la construction "duale" naturelle suivante. Soient

Ëc := EZf, jx : ÈX E la famille d'inclusions naturelles et À un générateur

de HK-koo(E,Ë+°°)~Q.



CARACTÉRISATION GÉOMÉTRIQUE DU MINIMAX 13

Définition. On appelle max-min de / le nombre

max mint/) := sup{À G R | fxA / 0} — min max(—/)

THÉORÈME 1.9. Z,£ minimax de f coïncide avec le max-min.

Démonstration. D'après le Théorème 1.8 on peut supposer / générique,
donc de Morse excellente. Alors on déduit de la Proposition 1.5 que / et —/

j ont le même point critique libre.

{ Le résultat suivant sera utile plus loin.

PROPOSITION 1.10. Soit f une fonction excellente, f un point critique
dégénéré de f, de valeur critique c :=/(£)• Supposons que pour tout e > 0

il existe deux déformations g, h de f telles que :

(i) g et h sont e-proches de f ;

(ii) g n'a aucune valeur critique dans ]c — e, c + e[;
(iii) h a deux valeurs critiques, C\ =/(£i) et c\ —fiff) dans ]c —e, c + e[,

telles que et £2 sont non dégénérés.

Alors £1 et £2 sont liés.

Démonstration. Le même argument que pour la preuve du Théorème 1.8

(où l'on considère Ec~e au lieu de E~°°) montre que

HXEc+*,Ec-*)~HXEch+^Ech+*).

Or, d'après le Théorème 1.2, on a Ht(Ech+e,Ech~e) — 0. Par conséquent
Ht(Ecg+,Ecg~e)0, c'est-à-dire Çi et £2 sont incidents. Il s'ensuit que et

£2 sont liés (Proposition 1.3).

2. La solution de minimax

2.1 Rappels de géométrie symplectique

Soit X une variété différentielle de dimension n, T*X {(x;y)} le fibré
cotangent3) de X, tt: T*X X la projection naturelle (x, y) i-r x. Le fibré
T*X, muni de la forme symplectique canonique A est une variété
symplectique de dimension 2 n.

3) Pas nécessairement trivial.
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On appelle isotopie hamiltonienne4) le flot au "temps" T d'un hamiltonien

h: [o,r] x rx^rx.
Deux sous-variétés du fibré cotangent sont isotopes s'il existe une isotopie
qui transforme l'une dans l'autre. Une sous-variété de T*X est lagrangienne
si sa dimension est égale à la dimension de la base X du fibré et si la
forme symplectique s'annule sur cette sous-variété. Une isotopie transforme
des sous-variétés lagrangiennes en sous-variétés lagrangiennes.

DÉFINITION. Une famille génératrice (globale) d'une sous-variété lagrangienne

L du fibré cotangent est une famille de fonctions {Sç : X -> R}^gr^
dépendant des paramètres (gR1, telle que :

• la fonction S: X x Kk —> R, définie par S(x; £) := Sç(x), est de classe C2 ;

• 0 est une valeur régulière de l'application (x;£) dçS(x;Ç), c'est-à-dire:

rk(ô|ç5, djxS)|{a£5=0}K.

• la famille engendre la sous-variété lagrangienne

L — {{x, dxS(x;à) | 3 «ê G R"" : 0 0}

Etant donnée une famille génératrice S: X x R^ -a R d'une sous-variété

lagrangienne, les opérations suivantes permettent de construire une nouvelle

famille génératrice T (de paramètres p de la même sous-variété :

(0) Addition d'une constante: si C G R, on pose 77 £ et T(x; rj)

S(x;0 +;(1) Stabilisation: si K' G N et Q est une forme quadratique non dégénérée

de R*', on pose t? (0 0) et T(x\ rj) 0 + ß(0) ;

(ii) Difféomorphisme : si (x;rj) i-> (x,£(x,rj)) est un difféomorphisme préser¬

vant les fibres du fibré trivial X x R^ -a X, on pose T(x; p) S(x; Ç(x, p)).

On remarque que l'opération de stabilisation augmente le nombre de paramètres
de la famille génératrice.

Définition. On dit que deux familles génératrices sont équivalentes si

l'on peut obtenir l'une à partir de l'autre à l'aide d'une suite d'opérations (o),

(i) et (ii).

4) Dans la suite on ne considérera que des isotopies hamiltoniennes.
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En fait, il se trouve que si deux familles sont équivalentes, on peut

obtenir l'une de l'autre par une stabilisation, suivie d'un difféomorphisme

et de l'addition d'une constante.

DÉFINITION. Une famille génératrice est quadratique à Vinfini (fgqi) s'il
j existe une forme quadratique non dégénérée Qoq telle que S{x\tf) <2oo(0>

j pour |£| assez grand.

; Les fgqi sont une classe très importante de fonctions génératrices pour
le résultat suivant d'existence (dû à Sikorav, voir [Sik]) et d'unicité (dû à

;

Viterbo, voir [Vil], [The]).

Théorème d'existence et d'unicité de Sikorav-Viterbo. Si X est

une variété fermée5), toute sous-variété lagrangienne de T*X isotope à la

section nulle {(x;0) \ x E X} admet une fgqi; de plus, toutes les fgqi d'une
telle sous-variété sont équivalentes.

Remarques.
(1) Le théorème reste vrai dans le cas des variétés non compactes si

l'isotopie est à support compact ou, ce qui revient au même, si la variété est

transversale à la base X en dehors d'un compact, c'est-à-dire si la projection
7r est une bijection entre L et X.

(2) Il existe une version de contact (pour les sous-variétés legendriennes
de JlX) du théorème d'existence de Sikorav, dû à Yu. Chekanov ([Chi]),
mais pas, à ma connaissance, pour le théorème d'unicité de Viterbo.

Définition. Soit XL := {(x,y) E L \ \XDn(x,y) < dim Y} l'ensemble
des points singuliers de L. La caustique de L est la projection 7r(Z^) sur X
de l'ensemble des points singuliers.

Génériquement, l'ensemble des points singuliers est l'union de la variété
régulière de codimension 1 des points singuliers simples (où le rang de Dir
est dim Y - 1) et d'une réunion finie de variétés de codimension au moins 3

(voir [Arl]).
On rappelle que L est exacte si la 1-forme de Liouville ydx, restreinte

à L, est exacte, c'est-à-dire s'il existe une fonction (: L 4 R telle que
ydx\L d(. Si c'est le cas, on peut associer à L une sous-variété legendrienne

5) C'est-à-dire compacte et sans bord.
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L de l'espace JlX {(x,z,j)} des jets d'ordre 1 sur X (muni de la forme
de contact standard dz — ydx), définie à une constante en z près:

L := {(q, C(q,p),p) I (<FP) e L}

DÉFINITION. On appelle front d'onde ou diagramme de Cerf dt L l'image
Fl de L par la projection (x,z,y) (-A (x,z) dans l'espace J°X {(x,z)} des

jets d'ordre 0 sur X.

Soit S(x;Ç) une fgqi de L.

Définition. L'ensemble de Maxwell Ml de L est l'ensemble des points

x e X tels que la fonction de Morse £ i-a S(x;Ç) n'est pas excellente.

Figure 4

Caustique et ensemble de Maxwell d'une courbe lagrangienne et du front associé

Remarques.
(1) D'après le théorème d'unicité de Viterbo, l'ensemble de Maxwell ne

dépend que de L.
(2) La projection naturelle FL -A X est une fibration en dehors de la

caustique et de l'ensemble de Maxwell (cf. Figure 4).
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(3) L'ensemble de Maxwell d'une sous-variété lagrangienne générique est

une hypersurface stratifiée (c'est-à-dire une réunion finie de variétés lisses, les

strates, connexes par arcs, deux à deux disjointes, telles que la fermeture de

chaque strate est la même strate et une réunion finie de strates de dimension

plus petite), voir [Ar2].
(4) La caustique et l'ensemble de Maxwell d'une sous-variété lagrangienne

générique ont mesure nulle.

2.2 La solution géométrique de (PC)

Considérons le problème de Cauchy pour l'équation de Hamilton-Jacobi

sur une variété Q (sans bord, mais pas forcément compacte) de hamiltonien

H : [0,+oo[xr*<2 -> R de classe C2 dans ]0, +oo[xT*<2 et continue au

bord, et donnée initiale uo : Q R de classe C1 :

f dtu(t, q) + H(t, q, dqu(t, q)) 0, V t > 0, q G Q

\u(0yq) u0(q), VqeQ.
Dans cette section on construit une sous-variété lagrangienne du fibré

cotangent de l'espace temps, la solution géométrique de (PC). Le théorème
de Sikorav-Viterbo permet de lui associer une "unique" fgqi S(t, q\ £). Cette
fonction est définie à une constante additive près; une fois cette constante
convenablement fixée, S est une solution, en générale multivoque, de (PC).
Son graphe6)

{(/, q, S(t, q; 0 | dçS(t,q; 0 0}

est le front d'onde de la solution géométrique.
Dans la prochaine section on utilisera la méthode de minimax pour choisir

en tout point (t, q) un unique point critique de £ t-A S(t, q; Q ; on obtiendra de

cette manière une section du front, qui s'avère être le graphe d'une fonction
bien définie, solution faible de (PC).

Sur le fibré cotangent T*Q {(q,p)}9 muni de la forme symplectique
canonique dpAdq, le champ hamiltonien XH (dpH,-dqH) induit le flot
(j)\ [0, +oo[xT*<2 r*g. Ses composantes <p*(q,p) (<q(t),p(t)), que l'on
appelle les caractéristiques de XH, sont les solutions des équations de Hamilton

imdpH{t,q(t),îm,

Jtp(t)- -dqH(t,q(t),p(t)),

telles que q(0) q et j?(0) p.

6) Plus précisément, le contour apparent du graphe de S, projection le long de l'axe des £
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Soit Ao := {(q,du0(q)) | q E Q} la sous-variété lagrangienne de T*Q
engendrée par la donnée initiale, et At := 0?(Ao) son évoluée au temps t.

Remarques.
(1) La sous-variété Ao est isotope à la section nulle de T*Q, l'isotopie

étant engendrée par l'hamiltonien — uq.

(2) Chaque At est isotope à la section nulle de T*Q ; en effet Af est

isotope à Ao par l'isotopie <j)~l, et les isotopies forment un groupe.
(3) Il s'ensuit que At est exacte et, d'après le théorème de Viterbo, admet

une unique fgqi St{q\ £).

Considérons maintenant la variété "espace-temps" Q :=Rxß, et son fibré

cotangent T* Q {(£, q; r,p)}, muni de la forme symplectique dp/\dq+dr/\dt.
Le hamiltonien autonome J-C(t,q;ryp) := t + H(t,q,p) engendre le flot
O: [0, +oo[xP*Q aTQ, de composantes

<E>s(r, q: T,p)(/ + s, q(t+ s); f(t + + s))

où cpp sont les caractéristiques de Xh telles que q(t) q et p(t) p, et

f(t) -H(t,q(t),p(t))
Pour tout t > 0, considérons l'application

h : -f T*Q, (q,p) f-A (t, q; -H(t,
Un calcul direct montre que la variété que l'on obtient par la réunion des

courbes caractéristiques du flot O, sortant de fo(Ao),

A := (J <&A'o(Ao)) Cfö,
^•>0

est lagrangienne. De même, pour tout T > 0 fixé, la sous-variété de L*Q

AT:= (J OSO'O(AO))

0 <s<T

est aussi lagrangienne.

Définition. On appelle A la solution géométrique de (PC), et Ar la

solution géométrique tronquée au temps P.

Remarque. Pour 5 fixé, O* translate A d'un temps s le long les

caractéristiques, c'est-à-dire:

<J>ä (if(Af)) 0>s o Or(/o(A0)) - <E>^(/o(A0)) 4+XAr+s)

(propriété de semi-groupe du flot).
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THÉORÈME 2.1. Pour tout T > 0, la solution géométrique tronquée au

temps T est isotope à la section nulle {(t,q; 0,0) | —T < t < 0,q G Q}.

kt

Figure 5

L'isotopie entre la solution géométrique tronquée et la section nulle

Démonstration. Puisque pour des temps petits il existe une solution

classique de (PC), il est facile de se ramener, par une isotopie, au cas

où la solution géométrique A coïncide avec la section nulle pour tout temps
inférieur à un certain e > 0 assez petit. Alors pour tout t < e' < e, on a

H(t,q,p) 0. On peut considérer l'extension suivante de H, de classe C2 :

~ /Hit, q,p), pour tout t > 0, (q,p) G P*ß
H(t,q,p) := <

[0 pour tout t < 0, iq,p) G P*ß.

Le flot O engendré par Ji := r + H étend le flot O à R tout entier. La
sous-variété lagrangienne

Ä := U ^Oo(Ao))
seR

de T*Q coïncide avec A dans le demi-espace {t > 0} et avec la section nulle
dans {t < 0}. Par conséquent, pour tout T > 0 fixé, est une isotopie
entre AT et la section nulle (cf. Figure 5).

On peut ainsi appliquer le théorème de Sikorav-Viterbo aux solutions
géométriques tronquées de (PC).
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Corollaire. Pour tout T > 0 fixé, AT admet une unique fgqi S(t, q\ £)

(modulo les opérations d'équivalence (i) et (il)), telle que son graphe restreint
à t — 0 coïncide avec le graphe de la donnée initiale uq

Dans la suite, S sera toujours une telle fgqi.

Démonstration. Soit S(t,q\£) l'unique fgqi de Ar. Or, cette fonction est

une primitive de la forme de Liouville pdq de Ao :

dS(0, q\ Uq)) du0(q) dq

où 0(0 est le seul point critique de £ So(q\Q. Par conséquent il existe

une unique constante C telle que S := 5 + C vérifie S(0, #;£o(0) wo(0

pour tout q £ Q.

Remarque. On peut construire une famille génératrice globale de la

solution géométrique A comme suit. La fonctionnelle d'action f pdq — Hdt
est une famille génératrice formelle (l'espace de paramètre étant de dimension

infinie) de A. En utilisant une méthode de point fixe, proposée par Amann-

Conley-Zehnder, on obtient une vraie fonction génératrice, voir [Car].

2.3 La solution de minimax

Soient t > 0, q G Q et 5(f, q; <0 la fgqi de la solution géométrique tronquée
AT, pour T > t. La fonction £ i-A S(t,q;Ç) est quadratique à l'infini, donc on

peut lui associer le niveau critique de minimax, étudié au §1.3.

Définition (Chaperon). On appelle solution de minimax de (PC) la
fonction

u(t, g) := min max{£ S(t, q; £)}

Remarque. L'autre solution que l'on peut construire avec ce même

argument (cf. [Cha]), la solution de max-min est, pour le Théorème 1.9,

la même solution.

M. Chaperon ([Cha]), T. Joukovskaïa ([Jou]), C. Viterbo ([Vi2]) ont étudié

les propriétés de cette fonction; en particulier Joukovskaïa a classifié les

singularités génériques de u en dimension petite (dimQ < 2).
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THÉORÈME 2.2 (Chaperon). La solution de minimax est une solution

faible1) de (PC), lipschitzienne sur chaque intervalle compact [0, T], et

indépendante du choix de la fgqi.

Remarque. Pour le Théorème 1.8, on peut supposer, sans perte de

généralité, que la solution géométrique de (PC) soit générique. Dans ce

cas l'ensemble 7r(X)UMA est de mesure nulle.

Démonstration. Soit A générique. La continuité de la solution de minimax

u est une conséquence immédiate de la stabilité du minimax par petites

déformations. En effet, fixons un point Co,<?o) de l'espace-temps et un e > 0.

Pour tout (t:q) assez proche de (to,qo), la fonction £ 5(f, #;£) est

une perturbation de £ 5Co,#oî£) aussi petite que l'on veut. D'après le

Théorème 1.8, on déduit que \u(to,qo) — u(t, q)\ < e.

Les autres propriétés de la solution de minimax sont simples à démontrer;

on renvoie pour les détails aux travaux déjà cités.

Soit (r0, qo) ^ Ma, t0 > 0. Par le théorème de la fonction implicite il
existe un voisinage IX de (to, qo) dans ]0, Too[xQ où le point critique libre de

£ i-A 5(t, q\ £) est une fonction £(t, q) de classe C1, définie par d^S(t, q\ £) 0.
Alors pour tout (t, q) G IX on a u(t, q) S(t,q;f(t,q)), donc u est de classe

C1, et vérifie l'équation de Hamilton-Jacobi; en effet

dtu(t, q) dtS(t, q\ £(t, q)), dqu(t, q) dqS(t, q; £(t, q))

et par définition de fgqi on a dtS(t,q\f(t,q)) + H(t,q,dqS(t,q\f(t,q))) t= 0.

Donc, en dehors de l'ensemble de Maxwell de A, m est dérivable et vérifie

l'équation de Hamilton-Jacobi. La solution de minimax satisfait la donnée

initiale, parce que l'on a choisi la fgqi de la solution géométrique telle que
5(0, q; £o(#)) uo(q), où £o(q) est le seul point critique de £ ha 5(0, q\ £).

Pour tout 0 < T < Too, w|[o,r] e$t lipschitzienne: en effet H et uo sont

lipschitziens, donc en un temps fini les espaces tangents aux fronts d'onde ne
sont jamais verticaux.

On déduit enfin du théorème de Viterbo que u ne dépend pas du choix
de 5 parmi les fgqi de A telles que 5(0, q\ f(q)) uo(q).

Remarque. Viterbo a montré que les mêmes résultats restent vrais

pour hamiltoniens et données initiales seulement lipschitziens, voir [Vi2].
On approche H et u0 par des suites de fonctions {Hn}neN et {Mo,n}neN>

7) C'est-à-dire u est continue et presque partout dérivable, et en ces points vérifie l'équation
de Hamilton-Jacobi ; de plus u satisfait la donnée initiale.
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suffisamment régulières, convergentes vers H et uo respectivement. Pour

chaque ne N on construit la solution de minimax un du problème de Cauchy
de hamiltonien Hn et donnée initiale (mqjW) ; il suit que la limite limn_^+00 un

est la solution de minimax du problème de Cauchy de hamiltonien H et
donnée initiale uq.

3. Caractérisation géométrique de la solution de minimax

3.1 Notations j

Soit 7°R {(#, z)} — R2 l'espace des jets d'ordre 0 sur R, 7To : /°R -A R j

la projection naturelle (q,z) q. Un front d'onde dans 7°R est la projection |

dans J°R d'une courbe legendrienne de JlR {(q,z,p)} — R3 par
7Ti : (q,z>p) i->- (q,z). Pour un front générique, les seules singularités possibles j

sont des cusps et des auto-intersections transverses.

Soit F un front de J°R. On appelle section de F toute partie connexe j

maximale a qui est le graphe d'une fonction x<r : tto(<j) -A R de classe C1 j

par morceaux. Une branche de F est une section de classe C1. j

Un front est long si, en dehors d'un compact de R, il est le graphe
d'une fonction, plat si sa tangente n'est jamais verticale. On peut dans ce

cas coorienter le front en fixant en tout point le vecteur orthonormal dont la

coordonnée en z est positive. Si le front est ainsi orienté, on peut distinguer
deux types de cusp: montant, si en suivant le front, on passe d'une branche j

à l'autre en la direction de la normale fixée, descendent si on passe en la

direction opposée.

Deux courbes legendriennes de J1 R sont isotopes (par une isotopie
legendrienne) s'il existe un chemin de l'une à l'autre dans l'espace des courbes

legendriennes plongées de ^R. Pour la famille correspondante de fronts les

perestroikas qui interviennent génériquement sont montrés à la Figure 6;

il s'agit des projections des mouvements de Reidemeister pour les nœuds

relèvement des fronts dans l'espace de contact (voir par exemple [Ar3]) : queue
d'aronde (Q), pyramide (P), porte-monnaie (.B) et auto-tangence sûres) (J~).

Les auto-tangences dangereuses9) sont interdites car elles correspondent
à un point d'auto-intersection de la courbe legendrienne dont le front est la

projection. Pour un front plat toutes les auto-tangences sont dangereuses.

8) Au point d'auto-tangence la coorientation des deux branches est opposée.

9) Au point d'auto-tangence la coorientation des deux branches est la même.
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(B) (/-)
Figure 6

Singularités permises dans l'isotopie entre deux fronts

Le nombre de cusps d'un front, comptés avec leur signe (positif pour les

cusps montants, négatif pour les cusps descendants), le nombre de Maslov,

est invariant par isotopies legendriennes.

3.2 Décompositions admissibles (d'après Chekanov et Pushkar)

Dans cette section on rappelle brièvement la construction d'un nouvel
invariant des nœuds legendriens, dû à Yu. Chekanov et P. Pushkar, qui permettra
d'établir une caractérisation géométrique de la solution de minimax.

La projection d'un nœud legendrien de JlR dans 7°R par tï\ est un front
fermé. Soit X un tel front, générique.

On appelle décomposition de X des courbes X\,,.., Xn fermées, ayant un
nombre fini d'auto-intersections, telles que pour i / j, Xi DXj contient un
nombre fini de points, et X\ U • • • U Xn X.

Un point double x G X; fl Xj de X est un point de saut si Xi et Xj ne sont

pas lisses en x, de Maslov si le nombre de cusps (comptés avec leur signe)
qui séparent le long du front les deux branches se coupant en x est 0.

Définition. Une décomposition (Xi,..., Xn) de X est admissible si :

(1) chaque X/ est homéomorphe au bord d'un disque: dXt Bt ;

(2) pour tout i G {1, q G R, l'ensemble

Bi(q) := {z £ R | (q,z) C Bt}

est connexe; en particulier si c'est un point, ce point est un cusp du front;
(3) si (qo,z) G Xi D Xj (i ^ j) est un point de saut alors pour q ^ q0,

assez proche q0, l'ensemble Bi(q)nBi(q) est soit Bt{q), soit Bj(q), soit vide;
(4) les points de sauts sont tous de Maslov.
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Remarques.
(1) Il suit des conditions (1) et (2) que chaque courbe Xt a exactement

deux cusps, qui divisent la courbe en deux parties, que l'on note af et af
(avec la convention suivante : pour tout (q, zf) G af générique, on a zf < zf

(2) La condition (3) équivaut à demander qu'aucun point de saut ne réalise
l'une des configurations interdites montrées à la Figure 7.

(I) OD (III)

Figure 7

Configurations interdites autour des points de saut

Notons par #ÇD) le nombre de courbes Xt et par #(§) le nombre de points
de saut dans une décomposition admissible V du front X.

Théorème de Chekanov-Pushkar ([Ch2], [C-P]). Le nombre de

décompositions admissibles d'un front projection d'un nœud legendrien est

invariant par isotopies legendriennes du nœud; de plus, le nombre #ÇD) — #(S)

est constant le long de l'isotopie.

Exemple 3.1. La Figure 8 montre deux décompositions d'un front
générique, projection d'un nœud legendrien. Le front est isotope au front
lèvre (le front ayant deux cusps et aucune auto-intersection), donc; d'après le

théorème de Chekanov-Pushkar, la décomposition (1) est la seule admissible.

Figure 8
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3.3 CARACTÉRISATION GÉOMÉTRIQUE DU MINIMAX

Revenons au problème de Cauchy (PC), notamment dans le cas Q R :

f dtu(t, q) + H(t, q, dqu(t, q)) 0, V t > 0, q G R
(PCR) <

[u(0,q) Uo(q), V q G R.

Fixons f0 > 0. Soit S(t,q\Q une fgqi de la solution géométrique A de (PCR)

(ou, plus précisément, une fgqi de la solution géométrique tronquée Ar, avec

T > to). D'après le théorème d'unicité de Viterbo, Sto(q;0 := S(to,q;0
est la fgqi de Ato Afl T*({t0} x R) ; il s'ensuit que les solutions de

minimax associées à A et Ato ont la même valeur aux points (to,qo) et qo

respectivement, à savoir minmax{£ S(to,qo',0} •

Définition. On appelle solution multivoque un front de J°R long plat,

isotope au front nul {(g, 0) G 7°R}, projection d'une courbe legendrienne

(plongée) transversale à la base en dehors d'un compact.

Dans la suite on suppose ces fronts orientés par l'orientation induite par
la première composante de J°R. Il résulte des sections 2.2 et 2.3 que le front
d'onde de Ato, graphe de Sto, est de type solution multivoque.

Remarque. Le théorème d'unicité de Viterbo permet de ramener le

problème de déterminer la solution de minimax d'un problème de Cauchy
(PC) quelconque au cas Q — R. En effet, considérons la solution AT du

problème général. Soient S(t^q;Q sa fgqi et F le front d'onde de Ar, graphe
de S. Si 7 est une courbe lisse, paramétrée par R 3 s i-a j(s) G]0, T[xQ et

sans aucun point singulier, la restriction A7 de la solution géométrique au

fibré cotangent de 7 est une sous variété lagrangienne. Une fois identifié 7
à R, (ij0 f-A S(7(s);0 est la fgqi de A7 C P*R (théorème d'unicité); son

graphe F1 coïncide avec la restriction de F à J°7 2^ 7°R. Donc pour tout
s G R, le minimax de F1 au point s est égal au minimax de F au point 7^).

De plus, on peut choisir 7 de manière que F1 soit un front de type solution
multivoque. En effet P7 est plat car F l'est. Pour que F1 soit long, on peut
choisir 7 comme suit: si Q Rn on prend n'importe quelle droite d dans

{to} x Q ; sinon on choisit pour 7 une courbe telle que 7(±oo) G {0} x Q.
Pour montrer que le front F1 est isotope à un front qui est le graphe d'une
fonction (et donc au front nul), considérons dans l'espace des courbes lisses
dans ]0, T[xQ sans singularités un chemin {yr} entre 70 7 et 71 {0} xd
dans le premier cas et entre 7 et une courbe contenue en t 0 dans le second
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(voir la Figure 9). Alors pour tout chemin générique de ce type, {Flr} est

l'isotopie cherchée10).

Dans la suite on va donc étudier le minimax d'un front d'onde de 7°R
de type solution multivoque, graphe d'une fgqi S(q;£). Nous allons donner

l'équivalent global (pour tout q G R) de la subdivision des points critiques
de £ i-À S(q\ 0 (pour chaque q e R fixé) en point critique libre et couples de

points critiques liés. La section du front parcourue par le point critique libre
de S lorsque q parcourt R est le graphe de la solution de minimax.

Pour utiliser le théorème de Chekanov et Pushkar il faut fermer le front en

ajoutant une section à l'infini. Ce nouveau front est le graphe d'une fonction

qui n'a aucun point critique libre. Lorsque q parcourt R, chaque couple
de points critiques liés parcourt sur le front une courbe fermée (ayant deux

cusps). Ces courbes fermées sont la seule décomposition admissible du front;
en particulier une de ces courbes est formée par le graphe de la solution de

minimax et la section à l'infini. Par conséquent, étant donné un front de type
solution multivoque, on peut déterminer le graphe de la solution de minimax
à l'aide de la décomposition admissible de ce front.

Soit a une branche de F ; d'après le théorème de la fonction implicite il
existe une application lisse Ça : 7To(g) -a RK telle que a soit le graphe de

q i-> S(to,q',£a(q)). Pour tout point q à l'intérieur de 7To(a), £<*(#) est un

point critique non dégénéré de S. Son indice ind(£(#)) ne dépend pas de q.
On appelle indice de a le nombre (indépendant du choix de S1) ind(£(#)) —

(où koo est l'indice de la forme quadratique de S).

10) Cela n'est pas vrai en général pour tout chemin: un front Flr pourrait avoir des auto-
tangences, qu'on peut faire disparaître par une perturbation arbitrairement petite du chemin,
puisque le front F n'a pas d'auto-tangences.
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Figure 9

Réduction au cas unidimensionnel (dans le cas Q S1)
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En tout point générique q G R, considérons les couples de points critiques

liés de £ i-> S(qm,Q. Si le front est générique et si 2n est le nombre de

cusps de F, cela définit 2n sections (o-J1-, crf (cr+, cr~), prolongées par
continuités aux points non génériques. On pose Xt <jf~ U cr/~.

Le front F n'est pas la projection d'un nœud de JlR; pour se ramener à

cette situation il faut "fermer" le front en ajoutant deux cusps et une section à

l'infini (plate), comme à la Figure 10. On note F ce front, qui coïncide

Figure 10

Le front F, compactification de F

avec F dans un rectangle R de 7°R contenant toutes les branches bornées

de F (comme le minimax coïncide avec le max-min, on obtient les mêmes

résultats si la branche à l'infini passe au dessous de R). Ce nouveau front
est la projection par tti d'un nœud legendrien L de JlR. On fixe sur F
l'orientation induite par celle de F.

Soit u la solution de minimax de (PCR). La section de Chaperon-Sikorav,
notée cres, est la section de F qui coïncide avec le graphe du minimax à

l'intérieur de R. Soit X0 a^Uacs- Il est facile de voir que (X0,Xi,... ,Xn)
est une décomposition de F.

THÉORÈME 3.2. La décomposition (Xo,Xi,... ,Xn) est la seule admissible.

Démonstration. D'après la section 1.2, les courbes X0,Xi,... ,Xn satisfont
les axiomes (1) et (2) des décompositions admissibles. La condition (4) est
aussi vérifiée parce que la différence d'indice de deux branches est égal au
nombre de cusps (comptés avec leur signe) qui les séparent le long du front
(Proposition 1.10).

Il reste à montrer que la condition (3) est satisfaite, ce qui revient à

montrer que les configurations interdites (I), (II) et (III) de la Figure 7 ne
se produisent jamais. Pour toute courbe Xt af~ U cr~, et q à l'intérieur de
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wo(Xj), on note (q, çf) G crf et G vi avec Çf > «F les deux

points de Xi au dessus de q ; pour Xq ctqo U <tCiS-, on note (q, £oo) G et

(<F Ù) eres avec f

Figure 11

Diagramme de Morse correspondant à la configuration interdite (I)

Soient S un point de saut, qs := ttq(S), q ^ qs assez proche de q$.
Supposons d'abord que S G Xi n Xj, avec i ^ j non nuls. Les diagrammes
de Morse de S correspondant aux configurations interdites (I), (II) et (III)
contredisent la Proposition 1.3, comme le montrent la Figure 11 pour la

configuration (I) et la Figure 12 pour les configurations (II) et (III).

Figure 12

Diagrammes de Morse des configurations interdites (II) et (III)

Puisque n'a aucun point de saut, il reste les sauts de type S G crC)SnXj,

avec i > 0. Comme on suppose que la section à l'infini a00 passe au dessus

des autres sections de F, la configuration (III) ne se produit jamais. Les

configurations (I) et (II) conduisent encore à des diagrammes de Morse qui
contredisent la Proposition 1.3, voir la Figure 13.
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Figure 13

Diagrammes de Morse des configurations interdites (I) et (II)

On a ainsi démontré que notre décomposition est admissible. Comme la

courbe legendrienne L dont F est la projection est isotope à {(g, 0,0) G T^R},
F est isotope au front lèvre. Ce front a une seule décomposition admissible,

donc par le théorème de Chekanov-Pushkar, F aussi admet une unique

décomposition admissible.

Remarques.
(1) Le Théorème 3.2 fournit un critère géométrique purement combinatoire

qui permet de déterminer la solution de minimax d'un front d'onde (de type
solution multivoque) de dimension 1 : il suffit pour cela de trouver la seule

décomposition admissible d'une compactification du front. La section associée

à la section à l'infini est alors la section de Chaperon-Sikorav du front
compactifié, ce qui détermine sans ambiguïté le graphe de la solution de

minimax sur le front initial.
(2) Les axiomes qui définissent les décompositions admissibles d'un front

d'onde ont été définis par Chekanov et Pushkar comme généralisation de

la classification des points critiques d'une fonction de Morse en couple de

fonctions critiques liés. En ce sens le Théorème 3.2 est le cas simple dont le
théorème de Chekanov et Pushkar est la généralisation.

Exemple 3.3. D'après l'exemple 3.1, le graphe de la solution de minimax
associée au front montré à la Figure 14 est la section marquée par un trait
plus épais.

3.4 Triangles évanescents

Dans cette section on donne une méthode qui permet de remplacer un
front d'onde de type solution multivoque par un front plus simple du même

type et ayant le même minimax. Cela permet de déterminer le minimax du
front initial en itérant cette méthode un nombre fini de fois.
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Soit {Fr}rG[o5i] une famille à un paramètre de fronts de type solution

multivoque, projection d'une isotopie legendrienne {Lr}rG[0,i].

DÉFINITION. On appelle intersection triple une perestroika de {Fr}rG[o,i]
de type "pyramide" (P), telle que le point triple soit l'intersection de trois
branches de même indice.

Remarque. D'après la définition de décomposition admissible, la seule

perestroika de la famille {/v}rëp,i] qui change de manière non continue

l'unique décomposition admissible du front initial est l'intersection triple
(Figure 15).

Figure 15

Changement de la décomposition admissible en passant par une intersection triple

Considérons maintenant le front F comme la trace d'une courbe T de

R2 7°R, paramétrée par s G R. Soit D T(so) IXu), avec sç, < si,
un point double du front, intersection de deux branches de même indice.

L'ensemble r([so,M[) est un triangle de sommet D s'il a exactement deux

cusps. On note alors 7(D) un tel triangle et, pour e > 0 aussi petit que
l'on veut, F — 7(D) un front de type solution multivoque qui coïncide avec

l'ensemble r(R \ l>o,siD en dehors de la boule £>£>(e) de R2 centrée en D
de rayon e, et qui est le graphe d'une fonction lisse à l'intérieur de cette

boule (cf. Figure 16).
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Figure 16

Le front F — 7(D)

Définition. Un triangle T(D) de sommet D est évanescent s'il existe

un chemin sans intersections triples entre F et F — 7(D) dans l'espace des

solutions multivoques.

Exemple 3.4. Considérons le front de l'exemple 3.3, montré à la

Figure 14. Les triangles 7(P) et 7(Q) sont évanescents, tandis que le triangle

T(R) ne l'est pas (en effet pour l'effacer il faut forcément passer par une

intersection triple au point S).

Soit V {X0,... ,Xn} la décomposition admissible d'une compactification
F d'un front de type solution multivoque F.

THÉORÈME 3.5. Si n > 1, au moins une des courbes Xi, avec i > 0, est

un triangle évanescent.

Démonstration. Considérons le graphe (connexe) associé à la décomposition

admissible de F tt\(L), c'est-à-dire le graphe ayant un sommet pour
chaque courbe Xi G V et une arête entre deux sommets pour chaque point
de saut entre les courbes correspondantes. D'après le théorème de Chekanov-

Pushkar, le nombre #(P) — #(S) est invariant par isotopie legendrienne de

L. Puisque L est isotope à un cercle dont la projection est le front lèvre,
ce nombre est toujours 1 pour les fronts obtenus par compactification d'une
solution multivoque. Or, #(V) étant le nombre de sommets et #(S) le nombre
d'arêtes du graphe, on déduit que ce graphe est un arbre, dont les feuilles11)
sont des triangles. Enfin, il est facile de voir que les triangles qui forment
une courbe Xi eV (i > 0) sont évanescents.

11 Les feuilles d'un arbre sont les sommets dont est issue une seule arête.
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De toute évidence on a le fait suivant.

PROPOSITION 3.6. Si un triangle 7(D) est évanescent, alors les sections
de minimax de F et de F — 7(D) coïncident en dehors de Bp(e).

Remarque. La Proposition 3.6 donne une méthode pour simplifier
récursivement le front d'onde dont on cherche le minimax: on recherche

parmi les triangles du front ceux qui sont évanescents. Après un nombre fini
de pas, on efface tous les cusps du front ; la section restant coïncide, en dehors

d'un nombre fini de boules arbitrairement petites, avec le minimax du front
initial.

Exemple 3.7. Considérons le front générique F de type solution multi-

voque montré à la Figure 17. A côté de chaque branche on a noté son indice.
La solution de minimax est la section mise en évidence.

Pour montrer cela, on applique la Proposition 3.6: les triangles 7(G) et

7(E) sont évanescents (pour le premier c'est clair, pour le deuxième, il faut

remarquer que la branche d'indice —1 de ce triangle peut traverser les points

A, B et C). Donc en dehors de deux boules aussi petites que l'on veut,
centrées en G et en F, les sections de minimax de F et de F — 7(G) — 7(E)
sont les mêmes (voir la Figure 18). Les triangles T(A) et 7(D) du nouveau
front sont de toute évidence évanescents, ce qui prouve que le minimax est

bien celui annoncé.



CARACTÉRISATION GÉOMÉTRIQUE DU MINIMAX

Figure 18

Le front F — T(G) — T(E)
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