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3.3 CARACTÉRISATION GÉOMÉTRIQUE DU MINIMAX

Revenons au problème de Cauchy (PC), notamment dans le cas Q R :

f dtu(t, q) + H(t, q, dqu(t, q)) 0, V t > 0, q G R
(PCR) <

[u(0,q) Uo(q), V q G R.

Fixons f0 > 0. Soit S(t,q\Q une fgqi de la solution géométrique A de (PCR)

(ou, plus précisément, une fgqi de la solution géométrique tronquée Ar, avec

T > to). D'après le théorème d'unicité de Viterbo, Sto(q;0 := S(to,q;0
est la fgqi de Ato Afl T*({t0} x R) ; il s'ensuit que les solutions de

minimax associées à A et Ato ont la même valeur aux points (to,qo) et qo

respectivement, à savoir minmax{£ S(to,qo',0} •

Définition. On appelle solution multivoque un front de J°R long plat,

isotope au front nul {(g, 0) G 7°R}, projection d'une courbe legendrienne

(plongée) transversale à la base en dehors d'un compact.

Dans la suite on suppose ces fronts orientés par l'orientation induite par
la première composante de J°R. Il résulte des sections 2.2 et 2.3 que le front
d'onde de Ato, graphe de Sto, est de type solution multivoque.

Remarque. Le théorème d'unicité de Viterbo permet de ramener le

problème de déterminer la solution de minimax d'un problème de Cauchy
(PC) quelconque au cas Q — R. En effet, considérons la solution AT du

problème général. Soient S(t^q;Q sa fgqi et F le front d'onde de Ar, graphe
de S. Si 7 est une courbe lisse, paramétrée par R 3 s i-a j(s) G]0, T[xQ et

sans aucun point singulier, la restriction A7 de la solution géométrique au

fibré cotangent de 7 est une sous variété lagrangienne. Une fois identifié 7
à R, (ij0 f-A S(7(s);0 est la fgqi de A7 C P*R (théorème d'unicité); son

graphe F1 coïncide avec la restriction de F à J°7 2^ 7°R. Donc pour tout
s G R, le minimax de F1 au point s est égal au minimax de F au point 7^).

De plus, on peut choisir 7 de manière que F1 soit un front de type solution
multivoque. En effet P7 est plat car F l'est. Pour que F1 soit long, on peut
choisir 7 comme suit: si Q Rn on prend n'importe quelle droite d dans

{to} x Q ; sinon on choisit pour 7 une courbe telle que 7(±oo) G {0} x Q.
Pour montrer que le front F1 est isotope à un front qui est le graphe d'une
fonction (et donc au front nul), considérons dans l'espace des courbes lisses
dans ]0, T[xQ sans singularités un chemin {yr} entre 70 7 et 71 {0} xd
dans le premier cas et entre 7 et une courbe contenue en t 0 dans le second
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(voir la Figure 9). Alors pour tout chemin générique de ce type, {Flr} est

l'isotopie cherchée10).

Dans la suite on va donc étudier le minimax d'un front d'onde de 7°R
de type solution multivoque, graphe d'une fgqi S(q;£). Nous allons donner

l'équivalent global (pour tout q G R) de la subdivision des points critiques
de £ i-À S(q\ 0 (pour chaque q e R fixé) en point critique libre et couples de

points critiques liés. La section du front parcourue par le point critique libre
de S lorsque q parcourt R est le graphe de la solution de minimax.

Pour utiliser le théorème de Chekanov et Pushkar il faut fermer le front en

ajoutant une section à l'infini. Ce nouveau front est le graphe d'une fonction

qui n'a aucun point critique libre. Lorsque q parcourt R, chaque couple
de points critiques liés parcourt sur le front une courbe fermée (ayant deux

cusps). Ces courbes fermées sont la seule décomposition admissible du front;
en particulier une de ces courbes est formée par le graphe de la solution de

minimax et la section à l'infini. Par conséquent, étant donné un front de type
solution multivoque, on peut déterminer le graphe de la solution de minimax
à l'aide de la décomposition admissible de ce front.

Soit a une branche de F ; d'après le théorème de la fonction implicite il
existe une application lisse Ça : 7To(g) -a RK telle que a soit le graphe de

q i-> S(to,q',£a(q)). Pour tout point q à l'intérieur de 7To(a), £<*(#) est un

point critique non dégénéré de S. Son indice ind(£(#)) ne dépend pas de q.
On appelle indice de a le nombre (indépendant du choix de S1) ind(£(#)) —

(où koo est l'indice de la forme quadratique de S).

10) Cela n'est pas vrai en général pour tout chemin: un front Flr pourrait avoir des auto-
tangences, qu'on peut faire disparaître par une perturbation arbitrairement petite du chemin,
puisque le front F n'a pas d'auto-tangences.

71

0 T

Figure 9

Réduction au cas unidimensionnel (dans le cas Q S1)
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En tout point générique q G R, considérons les couples de points critiques

liés de £ i-> S(qm,Q. Si le front est générique et si 2n est le nombre de

cusps de F, cela définit 2n sections (o-J1-, crf (cr+, cr~), prolongées par
continuités aux points non génériques. On pose Xt <jf~ U cr/~.

Le front F n'est pas la projection d'un nœud de JlR; pour se ramener à

cette situation il faut "fermer" le front en ajoutant deux cusps et une section à

l'infini (plate), comme à la Figure 10. On note F ce front, qui coïncide

Figure 10

Le front F, compactification de F

avec F dans un rectangle R de 7°R contenant toutes les branches bornées

de F (comme le minimax coïncide avec le max-min, on obtient les mêmes

résultats si la branche à l'infini passe au dessous de R). Ce nouveau front
est la projection par tti d'un nœud legendrien L de JlR. On fixe sur F
l'orientation induite par celle de F.

Soit u la solution de minimax de (PCR). La section de Chaperon-Sikorav,
notée cres, est la section de F qui coïncide avec le graphe du minimax à

l'intérieur de R. Soit X0 a^Uacs- Il est facile de voir que (X0,Xi,... ,Xn)
est une décomposition de F.

THÉORÈME 3.2. La décomposition (Xo,Xi,... ,Xn) est la seule admissible.

Démonstration. D'après la section 1.2, les courbes X0,Xi,... ,Xn satisfont
les axiomes (1) et (2) des décompositions admissibles. La condition (4) est
aussi vérifiée parce que la différence d'indice de deux branches est égal au
nombre de cusps (comptés avec leur signe) qui les séparent le long du front
(Proposition 1.10).

Il reste à montrer que la condition (3) est satisfaite, ce qui revient à

montrer que les configurations interdites (I), (II) et (III) de la Figure 7 ne
se produisent jamais. Pour toute courbe Xt af~ U cr~, et q à l'intérieur de
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wo(Xj), on note (q, çf) G crf et G vi avec Çf > «F les deux

points de Xi au dessus de q ; pour Xq ctqo U <tCiS-, on note (q, £oo) G et

(<F Ù) eres avec f

Figure 11

Diagramme de Morse correspondant à la configuration interdite (I)

Soient S un point de saut, qs := ttq(S), q ^ qs assez proche de q$.
Supposons d'abord que S G Xi n Xj, avec i ^ j non nuls. Les diagrammes
de Morse de S correspondant aux configurations interdites (I), (II) et (III)
contredisent la Proposition 1.3, comme le montrent la Figure 11 pour la

configuration (I) et la Figure 12 pour les configurations (II) et (III).

Figure 12

Diagrammes de Morse des configurations interdites (II) et (III)

Puisque n'a aucun point de saut, il reste les sauts de type S G crC)SnXj,

avec i > 0. Comme on suppose que la section à l'infini a00 passe au dessus

des autres sections de F, la configuration (III) ne se produit jamais. Les

configurations (I) et (II) conduisent encore à des diagrammes de Morse qui
contredisent la Proposition 1.3, voir la Figure 13.
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Figure 13

Diagrammes de Morse des configurations interdites (I) et (II)

On a ainsi démontré que notre décomposition est admissible. Comme la

courbe legendrienne L dont F est la projection est isotope à {(g, 0,0) G T^R},
F est isotope au front lèvre. Ce front a une seule décomposition admissible,

donc par le théorème de Chekanov-Pushkar, F aussi admet une unique

décomposition admissible.

Remarques.
(1) Le Théorème 3.2 fournit un critère géométrique purement combinatoire

qui permet de déterminer la solution de minimax d'un front d'onde (de type
solution multivoque) de dimension 1 : il suffit pour cela de trouver la seule

décomposition admissible d'une compactification du front. La section associée

à la section à l'infini est alors la section de Chaperon-Sikorav du front
compactifié, ce qui détermine sans ambiguïté le graphe de la solution de

minimax sur le front initial.
(2) Les axiomes qui définissent les décompositions admissibles d'un front

d'onde ont été définis par Chekanov et Pushkar comme généralisation de

la classification des points critiques d'une fonction de Morse en couple de

fonctions critiques liés. En ce sens le Théorème 3.2 est le cas simple dont le
théorème de Chekanov et Pushkar est la généralisation.

Exemple 3.3. D'après l'exemple 3.1, le graphe de la solution de minimax
associée au front montré à la Figure 14 est la section marquée par un trait
plus épais.

3.4 Triangles évanescents

Dans cette section on donne une méthode qui permet de remplacer un
front d'onde de type solution multivoque par un front plus simple du même

type et ayant le même minimax. Cela permet de déterminer le minimax du
front initial en itérant cette méthode un nombre fini de fois.
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