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3.3 CARACTERISATION GEOMETRIQUE DU MINIMAX

Revenons au probléme de Cauchy (PC), notamment dans le cas O=R:

Ou(t,q) + H(t,q,0qu(t,q)) =0, V1>0,g€R

Fixons f, > 0. Soit S(¢, ¢; £) une fgqi de la solution géométrique A de (PCR)
(ou, plus précisément, une fgqi de la solution géométrique tronquée AT, avec
T > ty). D’apres le théoréme d’unicité de Viterbo, S;(g;&) = S(t0,q;¢&)
est la fggqi de A, = ANT*{t} x R); il s’ensuit que les solutions de
minimax associées a2 A et A, ont la méme valeur aux points (f,go) et go
respectivement, 2 savoir minmax{& — S(t,q0;&)}.

(PCR) {

DEFINITION.  On appelle solution multivogue un front de J°R long plat,
isotope au front nul {(g,0) € J°R}, projection d’une courbe legendrienne
(plongée) transversale a la base en dehors d’un compact.

Dans la suite on suppose ces fronts orientés par 1’orientation induite par
la premigre composante de J'R. Il résulte des sections 2.2 et 2.3 que le front
d’onde de A, , graphe de S;,, est de type solution multivoque.

REMARQUE. Le théoreme d’unicit¢ de Viterbo permet de ramener le
probleme de déterminer la solution de minimax d’un probleme de Cauchy
(PC) quelconque au cas Q = R. En effet, considérons la solution A’ du
probléme général. Soient S(z,q; ) sa fgqi et F le front d’onde de AT, graphe
de S. Si «y est une courbe lisse, paramétrée par R 3 s — v(s) €]0, T[xQO et
sans aucun point singulier, la restriction A, de la solution géométrique au
fibré cotangent de -y est une sous variété lagrangienne. Une fois identifié -~y
a R, (5,8) = S(v(s);§) est la fgqi de A, C T*R (théoréme d’unicité); son
graphe F., coincide avec la restriction de F a J% ~ J°R. Donc pour tout
s € R, le minimax de F, au point s est égal au minimax de F au point (s).

De plus, on peut choisir v de manicre que F., soit un front de type solution
multivoque. En effet F, est plat car F I’est. Pour que F. soit long, on peut
choisir v comme suit: si Q = R" on prend n’importe quelle droite d dans
{to} x Q; sinon on choisit pour ~ une courbe telle que y(+oo) € {0} x Q.
Pour montrer que le front F., est isotope & un front qui est le graphe d’une
fonction (et donc au front nul), considérons dans 1’espace des courbes lisses
dans ]0, T[xQ sans singularités un chemin {v,} entre vp =~y et y; = {0} xd
dans le premier cas et entre -y et une courbe contenue en ¢ = 0 dans le second
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(voir la Figure 9). Alors pour tout chemin générique de ce type, {F, } est

I’isotopie cherchée 1°).
O> t
T
FIGURE 9

Réduction au cas unidimensionnel (dans le cas Q = S')

Q0 =Ss! Q

Dans la suite on va donc étudier le minimax d’un front d’onde de J°R
de type solution multivoque, graphe d’une fgqi S(g;&). Nous allons donner
I’équivalent global (pour tout g € R) de la subdivision des points critiques
de & — S(g; &) (pour chaque g € R fixé) en point critique libre et couples de
points critiques li€s. La section du front parcourue par le point critique libre
de S lorsque ¢ parcourt R est le graphe de la solution de minimax.

Pour utiliser le théoreme de Chekanov et Pushkar il faut fermer le front en
ajoutant une section a I’infini. Ce nouveau front est le graphe d’une fonction
qui n’a aucun point critique libre. Lorsque g parcourt R, chaque couple
de points critiques li€s parcourt sur le front une courbe fermée (ayant deux
cusps). Ces courbes fermées sont la seule décomposition admissible du front;
en particulier une de ces courbes est formée par le graphe de la solution de
minimax et la section a I’infini. Par conséquent, étant donné un front de type
solution multivoque, on peut déterminer le graphe de la solution de minimax
a I’aide de la décomposition admissible de ce front.

Soit o une branche de F'; d’apres le théoreme de la fonction implicite il
existe une application lisse &, : mo(a) — RE telle que o soit le graphe de
g — S(to, q;€4(q)). Pour tout point ¢ a l'intérieur de mo(cr), £,(g) est un
point critique non dégénéré de S. Son indice ind(£(g)) ne dépend pas de g.
On appelle indice de « le nombre (indépendant du choix de §) ind(£(q)) — koo
(ou ko est I’indice de la forme quadratique de S§).

10) Cela n’est pas vrai en général pour tout chemin: un front F., pourrait avoir des auto-
tangences, qu’on peut faire disparaitre par une perturbation arbitrairement petite du chemin,
puisque le front F n’a pas d’auto-tangences.
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En tout point générique g € R, considérons les couples de points critiques
liés de & — S(g;€). Si le front est générique et si 2n est le nombre de
cusps de F, cela définit 2n sections (afr g7y Jgasny (o.f,0,), prolongées par
continuités aux points non génériques. On pose X; :=o;" Uo; .

Le front F n’est pas la projection d’un nceud de J'R; pour se ramener a
cette situation il faut “fermer” le front en ajoutant deux cusps et une section a
Iinfini o, (plate), comme a la Figure 10. On note F ce front, qui coincide

FIGURE 10

Le front F , compactification de F

avec F dans un rectangle R de J°R contenant toutes les branches bornées
de F (comme le minimax coincide avec le max-min, on obtient les mémes
résultats si la branche a I’infini passe au dessous de R). Ce nouveau front
est la projection par m; d’un nceud legendrien L de J'R. On fixe sur F
I’orientation induite par celle de F.

Soit u la solution de minimax de (PCR). La section de Chaperon-Sikorav,
notée ocs, est la section de F qui coincide avec le graphe du minimax a
I'intérieur de R. Soit X := 0, Uocs. 1l est facile de voir que (Xo, X3, ...,X,)
est une décomposition de F.

THEOREME 3.2. La décomposition (Xy, X1, . ..,X,) est la seule admissible.

Démonstration. D’apres la section 1.2, les courbes Xy, X, ..., X, satisfont
les axiomes (1) et (2) des décompositions admissibles. La condition (4) est
aussi vérifiée parce que la différence d’indice de deux branches est égal au
nombre de cusps (comptés avec leur signe) qui les séparent le long du front
(Proposition 1.10).

Il reste a montrer que la condition (3) est satisfaite, ce qui revient 2
montrer que les configurations interdites (I), (I) et (II) de la Figure 7 ne
se produisent jamais. Pour toute courbe X; = o;" Uo;, et g a I'intérieur de
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mo(X;), on note (q,&) € o et (q,&") € o , avec &M > &7, les deux
points de X; au dessus de g ; pour Xy = 0o U0ocs, On note (g, €s) € 0o €t

(q,&e) € ocs , avec € > &y

» &

ind(o;”) = ind(e;") ind(o])

FIGURE 11
Diagramme de Morse correspondant a la configuration interdite (I)

Soient S un point de saut, gs := m(S), g # qs assez proche de gs.
Supposons d’abord que S € X; N X;, avec i # j non nuls. Les diagrammes
de Morse de S correspondant aux configurations interdites (I), (II) et (III)
contredisent la Proposition 1.3, comme le montrent la Figure 11 pour la
configuration (I) et la Figure 12 pour les configurations (II) et (III).

ind(o;") = ind(o}")

gs q
ind(c;™) = ind(aj+)

FIGURE 12
Diagrammes de Morse des configurations interdites (II) et (III)

Puisque o, n’a aucun point de saut, il reste les sauts de type S € ocsNX;,
avec i > 0. Comme on suppose que la section a I’infini 0., passe au dessus
des autres sections de F , la configuration (III) ne se produit jamais. Les
configurations (I) et (I) conduisent encore a des diagrammes de Morse qui
contredisent la Proposition 1.3, voir la Figure 13.
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FIGURE 13

Diagrammes de Morse des configurations interdites (I) et (II)

On a ainsi démontré que notre décomposition est admissible. Comme Ila
courbe legendrienne L dont F est la projection est isotope & {(g,0,0) € J'R},
F est isotope au front lévre. Ce front a une seule décomposition admissible,
donc par le théoreme de Chekanov-PushkKar, F aussi admet une unique
décomposition admissible. [

REMARQUES.

(1) Le Théoreéme 3.2 fournit un critére géométrique purement combinatoire
qui permet de déterminer la solution de minimax d’un front d’onde (de type
solution multivoque) de dimension 1: il suffit pour cela de trouver la seule
décomposition admissible d’une compactification du front. La section associée
a la section a l’infini est alors la section de Chaperon-Sikorav du front
compactifié, ce qui détermine sans ambiguité le graphe de la solution de
minimax sur le front initial.

(2) Les axiomes qui définissent les décompositions admissibles d’un front
d’onde ont été définis par Chekanov et Pushkar comme généralisation de
la classification des points critiques d’une fonction de Morse en couple de
fonctions critiques liés. En ce sens le Théoréme 3.2 est le cas simple dont le
théoréme de Chekanov et Pushkar est la généralisation.

EXEMPLE 3.3. D’apres ’exemple 3.1, le graphe de la solution de minimax
associée au front montré a la Figure 14 est la section marquée par un trait
plus épais.

3.4 TRIANGLES EVANESCENTS

Dans cette section on donne une méthode qui permet de remplacer un
front d’onde de type solution multivoque par un front plus simple du méme
type et ayant le méme minimax. Cela permet de déterminer le minimax du
front initial en itérant cette méthode un nombre fini de fois.
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