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Aut°(M3) déterminée par la translation à gauche par l'élément

(1

A lQg<A) T\

2 i 1 )'
Puisque «l'image» de pT est dans le centre de % (C), il est facile de voir que

pT définit bien une représentation à valeurs dans Aut(M3) et que la variété XT
obtenue par suspension de cette représentation au-dessus de P1 SL(2, C)/P
est homogène. La fibration de Tits de XT coïncide avec la projection sur P1

et n'est pas triviale. Pour s'en convaincre, il suffit de remarquer que l'image
du second groupe d'homologie de P1 dans la fibre M3 est engendrée par la
matrice de paramètres x y 0, z r.

Si p et q sont deux entiers et / est un endomorphisme de P1 de degré

pq, la transformation

(l
x z\ l\ p.x pq.z\

0 1 y])^ (f([u : v]), 0 1 q.y
0 0 1/ \0 0 1 /

détermine un endomorphisme de XT de degré (pq)5. Tous les endomorphismes
de P1 se relèvent donc en des endomorphismes de M3. Les endomorphismes
ainsi construits n'ont pas de facteur inversible.

Exemple 5.4. Donnons maintenant un exemple de variété homogène non
kâhlérienne ne possédant pas d'endomorphisme de degré supérieur à 1. Soit

X le quotient de SL(/î, C) par un sous-groupe discret cocompact T. Pour

montrer que tout endomorphisme / : X —)> X est un automorphisme, utilisons

que X est parallélisable, son fibré cotangent étant trivialisé par les 1 -formes
invariantes par translation à droites sur SL(rc, C). L'action de / sur les formes
différentielles induit ainsi un endomorphisme f* de l'algèbre de Lie s[(/î, C),
dont le déterminant est égal au degré topologique de /. Tout endomorphisme de

sl(>7, C) étant un automorphisme intérieur (voir [16], prop. 1.98), le déterminant

de /* est égal à 1 et / est un automorphisme.

6. Existence de facteurs inversibles.

Nous démontrons maintenant le théorème énoncé dans l'introduction. Les

idées principales sont déjà apparues dans la partie précédente.
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6.1 Structure de la fibration de Tits

Supposons que la base de la fibration de Tits est un espace projectif F77. La

fibre F est une variété parallélisable : nous noterons Lo la composante connexe
de l'identité de son groupe d'automorphismes et L son revêtement universel. Il
existe un sous-groupe discret cocompact Io de Lq tel que F Lo/To. L'image
réciproque de To par l'application de revêtement L —» Lq sera notée T.

Si l'on écrit X sous la forme G/H, où G est un groupe de Lie complexe

simplement connexe agissant holomorphiquement sur X, on récupère un

morphisme p\ G -» Aut(P777) dont l'image S agit transitivement sur F77.

En particulier, S coïncide avec le groupe PGL(/î, C) ou éventuellement avec

le groupe symplectique Sp(n/2, C) si n est pair (voir [2]). Ces groupes sont

simples, ce qui permet d'appliquer le théorème de Levi-Malcev et de trouver
une section a: S -A G du morphisme p. Nous noterons encore S l'image
dans G du groupe S.

Fixons un point qo de P777 par exemple celui de coordonnées [1 : 0 : : 0],
et notons P le stabilisateur de q0 dans S, de sorte que F77 s'identifie à S/P.
L'action de S sur X (via a: S G) permute transitivement les fibres de la
fibration de Tits. Nous pouvons donc reconstruire X comme la suspension de

la représentation

obtenue par l'action de P sur la fibre Fqo au-dessus du point g. L'action de
P ainsi construite se fait par translation à gauche.

Si S est le groupe spécial linéaire, alors P est (conjugué à)

Soit / un endomorphisme de X, / l'endomorphisme induit sur P77 et
q un point de P777 Si s est un élément de S qui envoie Fa sur Fh x,I j

q /(<?) '
I s of détermine un endomorphisme de la fibre Fq. Ce dernier ne dépend

du choix de s que modulo P : son action sur les groupes d'homotopies et
d'homologie de Fq n'en dépend donc pas. Cette remarque permet de définir
la notion d'endomorphisme agissant par translation, par automorphisme ou
par endomorphisme de degré d dans les fibres.

(19) P Aut(F?0)° L0

et lorsque S est le groupe symplectique Sp(g, C),
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6.2 Un théorème de Jörg Winkelmann

Sur une variété parallélisable compacte L/F, les champs de vecteurs

holomorphes globaux sont en correspondance bi-univoque avec les éléments
de l'algèbre de Lie l de L. Tout endomorphisme </> de L/F détermine alors un
endomorphisme d'algèbre de Lie </>* : [ —¥ 1 (voir [29]). Si L est simplement
connexe, il existe donc un automorphisme O de L qui stabilise F (i.e.

O(r) c T) et un élément a de L tel que 4>(gF) — a&(g)F.
Puisque </>* est un morphisme d'algèbre de Lie, il préserve le radical

résoluble de l. Ceci permet de trouver une fibration équivariante de L/F à

valeurs dans S/F' où S est semi-simple. Puisque tous les endomorphismes
des algèbres de Lie simples sont intérieurs, l'endomorphisme induit sur la
base est un automorphisme et l'un de ses itérés est une translation à gauche.
Ce raisonnement peut être poussé un cran plus loin et conduit au théorème

suivant de J. Winkelmann [29] :

THÉORÈME 6.1 (J. Winkelmann). Soit F L/F une variété complexe

compacte parallélisable et f un endomorphisme holomorphe de F. Si N
désigne le nilradical de L, il existe un automorphisme f : L/NF —ï- L/NF
qui rend le diagramme suivant commutatif

L/T->L/T

L/(NT)——-4 L/(NT)

Reprenons l'étude de la fibration de Tits commencée au paragraphe 6.1. Le
théorème précédent s'applique simultanément à l'action du groupe parabolique
P et à celle induite par l'endomorphisme / sur les fibres. Nous pouvons donc

énoncer une version fibrée du théorème de J. Winkelmann. Si#nous notons

L/F la fibre de Tits (où F est un réseau du groupe de Lie complexe, connexe
et simplement connexe L), et N le radical nilpotent de L, nous obtenons un

diagramme commutatif de fibrations
morphisme fibré TrX 5- Y

4
pm y pm

id

qui est équivariant sous l'action de /; la variété Y est un espace homogène

complexe compact dont la base de Tits est isomorphe à Pm et la fibre à



ENDOMORPHISMES DES VARIÉTÉS HOMOGÈNES 255

L/(NT) ; cette variété Y est munie d'un endomorphisme fY agissant par

automorphisme dans les fibres.

6.3 ENDOMORPHISMES AGISSANT PAR AUTOMORPHISMES DANS LES FIBRES

PROPOSITION 6.2. Soit X une variété homogène complexe compacte dont

lafibration de Tits a pour base un espace projectif. Si f est un endomorphisme

de degré strictement supérieur à 1 qui agit par automorphisme dans les fibres,

la fibration de Tits est un produit.

Démonstration : première étape. Conservons les notations du

paragraphe 6.1 et supposons pour commencer que la fibre de Tits F est le

quotient d'un groupe de Lie semi-simple simplement connexe L. Dans ce cas,

quitte à remplacer l'endomorphisme / par l'un de ses itérés, l'action de /
dans les fibres se fait par translation. En particulier, son action sur le groupe
fondamental des fibres est triviale. Le degré de / étant supérieur à 1, l'action
de / sur 7r2(Pm) est la multiplication par un entier strictement plus grand

que 1. L'équivariance de la suite exacte

(22) •.. ^ ^2(Pm) -A TTfiF) -A 7n(X) -A 7o(Pm) {0} -A • •.

montre donc que la première flèche a une image finie. Quitte à changer X

par un revêtement fini, on peut donc supposer que le groupe fondamental de

F s'injecte dans celui de X.
Si nous passons au revêtement universel X de X, la fibre de la fibration de

Tits est alors remplacée par le groupe de Lie simplement connexe L et X est

l'espace total d'un fibré principal sous l'action de L par translations à droite.

L'endomorphisme / s'y relève en un morphisme d'espaces fibrés f:X-ïX,
qui est équivariant pour l'action de L par multiplication à droite à la source
et par multiplication à droite après composition par un automorphisme de L
au but. On obtient donc un morphisme / au-dessus de / entre deux fibrés

principaux équivalents. Les classes caractéristiques du fibré principal X doivent
être invariantes par / et sont donc nulles, car / agit par multiplication par un
entier positif strictement plus grand que 1 sur chaque espace de cohomologie.
Nous allons employer cette propriété à plusieurs reprises pour montrer que la
fibration de Tits est en fait un produit.

Soit W le fibré vectoriel obtenu en faisant le produit fibré du fibré principal
X par la représentation adjointe de L. Il suffit de montrer que ce fibré vectoriel
est trivial. Par construction, X est un fibré principal obtenu par la suspension
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d'une représentation

(23) p.P^L
où P est le stabilisateur du point [1 : 0 : : 0] pour l'action de PGL(m+l, C)
(resp. Sp((m + l)/2,C)) sur F". Le fibré W est donc un fibré vectoriel

homogène: il est obtenu par suspension de la représentation adLop où adl
désigne la représentation adjointe de L.

L'endomorphisme / détermine un endomorphisme de W (au-dessus de

/) qui agit par isomorphisme linéaire dans les fibres. L'argument relatif aux
classes caractéristiques du fibré X affirme ainsi que les classes de Chern de

W sont nulles et, en particulier, que sa pente

ci(W)
(24) p(W)

rang(lL)

est nulle. Si V était un sous-faisceau de W de pente p{V) strictement

supérieure à 0, son image réciproque par fn serait de pente dnp{V), ce

qui contredirait l'existence d'une borne supérieure pour les pentes des sous-

faisceaux de W (voir [17], § V.7). Ceci montre que W est un fibré semi-stable

et permet de trouver une décomposition de W en somme directe de sous-

faisceaux

(25) W ®i=1_kWi

telle que chaque Wt est stable et de pente nulle [24]. L'image réciproque
d'une telle décomposition par / est une nouvelle décomposition de W en

faisceaux stables: par le corollaire 2.8 de [24], chaque /*(W/) est donc

isomorphe à l'un des Wj. Ceci montre que toutes les classes de Chern des

Wi sont nulles. Puisque P" est simplement connexe, la nullité des classes de

Chern et la stabilité assurent la trivialité. Les Wi, et donc W lui même, sont

triviaux.
Ceci démontre la proposition lorsque la fibre de Tits est le quotient d'un

groupe de Lie semi-simple par un réseau : la fibration étant triviale, / admet

un facteur inversible.

Seconde étape. Lorsque L est un groupe de Lie connexe simplement

connexe quelconque, l'argument qui vient d'être donné montre que le fibré

principal associé à sa partie semi-simple est trivial.
Dans la suite exacte (22) nous pouvons donc supposer que l'image de la

première flèche est contenue dans l'intersection de T avec le radical de L.
On peut donc supposer pendant quelques lignes que L est résoluble.
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Un automorphisme d'un tore agit sur le groupe fondamental 7T en ne

possédant aucune valeur propre entière strictement plus grande que 1. Plus

généralement, si L est résoluble, il n'existe pas de sous-groupe cyclique infini
A {...,a_1, 1, a, a2, ...} dans T tel que /*(a) ad avec \d\ > 1.

L'équivariance de la suite exacte (22) montre alors que l'image de la première
flèche est triviale. Comme dans la première étape, on peut donc relever la

dynamique au revêtement universel de X et supposer que les fibres de la

projection sur Pm sont isomorphes au groupe de Lie simplement connexe L.
La variété X est obtenue en faisant une suspension à partir d'un morphisme

du groupe parabolique P dans L et la première étape permet de supposer que
le morphisme du groupe parabolique P à valeurs dans L est en fait à valeurs
dans le radical résoluble Rad(L) de L.

Supposons pour commencer que P est le stabilisateur de [1 : 0 : : 0]
dans SL(m + 1, C). Un tel morphisme est trivial sur le sous-groupe simple
constitué des matrices de la forme

Il est donc trivial sur le plus petit sous-groupe distingué contenant cette copie
de SL(m, C) et il est facile d'en déduire que le morphisme factorise à travers
la représentation de P dans C* donnée par

Si l'un des poids de la représentation associée est non nul, nous pouvons
construire un fibré en droites /-équivariant de classe de Chern non nulle, ce
qui est impossible. Tous les poids de la représentation sont donc nuls et le
morphisme de P dans L est trivial.

Supposons maintenant que P est le stabilisateur de [1 : 0 : : 0] dans
le groupe Sp(g, C), avec m+ 1 —2q. Dans ce cas, le morphisme de P dans
Rad(L) est trivial sur le sous-groupe de Lie simple

où A décrit Sp(g-1, C) et Id est l'élément neutre de SL(2, C). Le morphisme
de P dans Rad(L) est donc trivial sur le plus petit sous-groupe algébrique
distingué qui contient ce groupe. Il transite ainsi par

(26) A G SL(m, C).

(27)

(28)

(29)
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où M est une matrice triangulaire supérieure de déterminant 1,

<*» «=(ô
Là encore, l'argument sur les classes de Chern permet de conclure que la

représentation est triviale : les matrices M diagonales sont dans le noyau et le

sous-groupe distingué qu'elles engendrent coïncide avec le groupe des matrices

triangulaires supérieures.

Nous avons donc montré dans tous les cas que la représentation de P était

triviale, ce qui assure que X est un produit. Le théorème est démontré.

Exemple 6.1. Pour les surfaces de Hopf (voir l'exemple 5.1), le
revêtement universel coïncide avec le fibré tautologique de P1 (de fibre C*
et de classe de Chern —1). Cette surface n'a donc aucun endomorphisme
non injectif qui soit de degré 1 dans les fibres. Nous pourrions le montrer
directement en travaillant sur le revêtement universel C2 \ {0}.

6.4 Application

Pour démontrer le théorème 1.1, il suffit maintenant de juxtaposer le

paragraphe 6.2, la proposition 6.2 et le théorème de Paranjape et Srinivas : si /
est un endomorphisme sans facteur inversible, la base de la fibration de Tits doit
être un produit d'espaces projectifs et / induit un produit d'endomorphismes
non inversibles, donc la fibre est une nilvariété.

Remarque 6.1. Certains endomorphismes de la base n;Pm' ne se relèvent

pas en des endomorphismes de X, même si la fibre de Tits est une nilvariété. Si

l'on suppose que la fibre F est un quotient d'un groupe de Heisenberg 74, une
condition nécessaire et suffisante est que les endomorphismes fi : Pm —y Pm/

aient tous même degré pour les indices i tels que la suspension de F au-dessus

de Pm/ est non triviale. Ce résultat peut être obtenu en utilisant les arguments
présentés au cours des exemples 5.2 et 5.3. Nous le laissons en exercice.

7. Endomorphismes irréductibles

Dans [10], J.-Y. Briend et J. Duval montrent que les endomorphismes

non inversibles de l'espace projectif possèdent tous une unique mesure de

probabilité invariante d'entropie maximale. De plus, cette mesure coïncide avec
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