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AutO(M3) déterminée par la translation a gauche par 1’élément

AN R
17) pr (0 a_1>: 01 0
00 I

Puisque «1’image » de p, est dans le centre de #H3(C), il est facile de voir que
p- définit bien une représentation a valeurs dans Aut(M3) et que la variété X
obtenue par suspension de cette représentation au-dessus de P! = SL(2,C)/P
est homogene. La fibration de Tits de X, coincide avec la projection sur P!
et n’est pas triviale. Pour s’en convaincre, il suffit de remarquer que I’image
du second groupe d’homologie de P! dans la fibre M3 est engendrée par la
matrice de parametres x =y =0, z=17.

Si p et g sont deux entiers et f est un endomorphisme de P! de degré
pq, la transformation

1 x z i 1 px pgz
(18) Ju:v, [0 1T y )= (f(Qu:vD, {0 1 gy )
0 0 1 0O O 1

détermine un endomorphisme de X, de degré (pq)’. Tous les endomorphismes
de P! se relevent donc en des endomorphismes de Ms. Les endomorphismes
ainsi construits n’ont pas de facteur inversible.

EXEMPLE 5.4. Donnons maintenant un exemple de variété homogene non
kahlérienne ne possédant pas d’endomorphisme de degré supérieur a 1. Soit
X le quotient de SL(n,C) par un sous-groupe discret cocompact I'. Pour
montrer que tout endomorphisme f: X — X est un automorphisme, utilisons
que X est parallélisable, son fibré cotangent €tant trivialisé par les 1-formes
invariantes par translation a droites sur SL(n, C). L’action de f sur les formes
différentielles induit ainsi un endomorphisme f* de 1’algebre de Lie sl(n, C),
dont le déterminant est égal au degré topologique de f. Tout endomorphisme de
sl(n, C) étant un automorphisme intérieur (voir [16], prop. 1.98), le déterminant
de f* est égal a 1 et f est un automorphisme.

6. EXISTENCE DE FACTEURS INVERSIBLES.

Nous démontrons maintenant le théoreme énoncé dans 1’introduction. Les
idées principales sont déja apparues dans la partie précédente.
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6.1 STRUCTURE DE LA FIBRATION DE TITS

Supposons que la base de la fibration de Tits est un espace projectif P”. La
fibre F' est une variété parallélisable : nous noterons Ly la composante connexe
de I’identité de son groupe d’automorphismes et L son revétement universel. Il
existe un sous-groupe discret cocompact Iy de Ly tel que F = Ly/Ty. L’image
réciproque de I'y par I’application de revétement L — Ly sera notée I.

Si I’on écrit X sous la forme G/H, ou G est un groupe de Lie complexe
simplement connexe agissant holomorphiquement sur X, on récupere un
morphisme p: G — Aut(P") dont I’image S agit transitivement sur P".
En particulier, S coincide avec le groupe PGL(n, C) ou éventuellement avec
le groupe symplectique Sp(n/2,C) si n est pair (voir [2]). Ces groupes sont
simples, ce qui permet d’appliquer le théoréeme de Levi-Malcev et de trouver
une section o:.S — G du morphisme p. Nous noterons encore S I'image
dans G du groupe S.

Fixons un point gy de P™, par exemple celui de coordonnées [1 : 0 : ... : 0],
et notons P le stabilisateur de gy dans S, de sorte que P s’identifie a S/P.
L’action de § sur X (via o: § — G) permute transitivement les fibres de la
fibration de Tits. Nous pouvons donc reconstruire X comme la suspension de
la représentation

(19) P — Aut(F,)" = L,

obtenue par I’action de P sur la fibre F,, au-dessus du point Q. L’action de
P ainsi construite se fait par translation a gauche.
Si § est le groupe spécial linéaire, alors P est (conjugué &)

(20) {(g X) :beC", Ac GL(n,C), a= det(A)—l} :
et lorsque § est le groupe symplectique Sp(g, C),
a b * k x
1) p=l |0 @ xx L AeSplg—1,0C)
0 A

Soit f un endomorphisme de X, f I’endomorphisme induit sur P” et

q un point de P™. Si s est un élément de S qui envoie F, sur o

s1 of détermine un endomorphisme de la fibre F,. Ce dernier ne dépend
du choix de s que modulo P: son action sur les groupes d’homotopies et
d’homologie de F, n’en dépend donc pas. Cette remarque permet de définir
la notion d’endomorphisme agissant par translation, par automorphisme ou
par endomorphisme de degré d dans les fibres.
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6.2 UN THEOREME DE JORG WINKELMANN

Sur une variété parallélisable compacte L/T", les champs de vecteurs
holomorphes globaux sont en correspondance bi-univoque avec les éléments
de I’algebre de Lie [ de L. Tout endomorphisme ¢ de L/I" détermine alors un
endomorphisme d’algebre de Lie ¢, : [ — [ (voir [29]). Si L est simplement
connexe, il existe donc un automorphisme ® de L qui stabilise I' (i.e
O(I) CT') et un élément a de L tel que ¢(g") = a®(g)I".

Puisque ¢, est un morphisme d’algebre de Lie, il préserve le radical
résoluble de [. Ceci permet de trouver une fibration équivariante de L/T" a
valeurs dans S/T” ol § est semi-simple. Puisque tous les endomorphismes
des algebres de Lie simples sont intérieurs, 1’endomorphisme induit sur la
base est un automorphisme et I’un de ses itérés est une translation a gauche.
Ce raisonnement peut &tre poussé un cran plus loin et conduit au théoreme
suivant de J. Winkelmann [29]:

THEOREME 6.1 (J. Winkelmann). Soit F = L/T" une variété complexe
compacte parallélisable et f un endomorphisme holomorphe de F. Si N
désigne le nilradical de L, il existe un automorphisme f': L/NT" — L/NT
qui rend le diagramme suivant commutatif

L/T L . L/T

Wl lﬂ

L/ (NT) —f—/—> L/ (NT) .

Reprenons 1’étude de la fibration de Tits commencée au paragraphe 6.1. Le
théoréme précédent s’applique simultanément a 1’action du groupe parabolique
P et a celle induite par I’endomorphisme f sur les fibres. Nous pouvons donc
énoncer une version fibrée du théoreme de J. Winkelmann. Si*nous notons
L/T la fibre de Tits (ou I' est un réseau du groupe de Lie complexe, connexe
et simplement connexe L), et N le radical nilpotent de L, nous obtenons un
diagramme commutatif de fibrations

morphisme ﬁbré\

X > Y

i |

oo
qui est équivariant sous ’action de f; la vari€té Y est un espace homogene
complexe compact dont la base de Tits est isomorphe a P™ et la fibre a
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L/(NT); cette variété Y est munie d’un endomorphisme fy agissant par
automorphisme dans les fibres.

6.3 ENDOMORPHISMES AGISSANT PAR AUTOMORPHISMES DANS LES FIBRES

PROPOSITION 6.2. Soit X une variété homogene complexe compacte dont
la fibration de Tits a pour base un espace projectif. Si f est un endomorphisme
de degré strictement supérieur & 1 qui agit par automorphisme dans les fibres,
la fibration de Tits est un produit.

Démonstration: premiére étape. Conservons les notations du para-
graphe 6.1 et supposons pour commencer que la fibre de Tits F est le
quotient d’un groupe de Lie semi-simple simplement connexe L. Dans ce cas,
quitte 2 remplacer I’endomorphisme f par 'un de ses itérés, 'action de f
dans les fibres se fait par translation. En particulier, son action sur le groupe
fondamental des fibres est triviale. Le degré de f étant supérieur a 1, I’action
de f sur m(P™) est la multiplication par un entier strictement plus grand
que 1. L’équivariance de la suite exacte

(22) R Wz(Pm) — m(F) = mX) —» m(P") = {O} % .

montre donc que la premiere fleche a une image finie. Quitte a changer X
par un revétement fini, on peut donc supposer que le groupe fondamental de
F s’injecte dans celui de X.

Si nous passons au revétement universel X de X , la fibre de la fibration de
Tits est alors remplacée par le groupe de Lie simplement connexe L et X est
I’espace total d’un fibré principal sous I’action de L par translations a droite.
L’endomorphisme f s’y releve en un morphisme d’espaces fibrés ]7: X=X,
qui est équivariant pour I’action de L par multiplication a droite a la source
et par multiplication a droite apreés composition par un automorphisme de L
au but. On obtient donc un morphisme f au-dessus de f entre deux fibrés
principaux €quivalents. Les classes caractéristiques du fibré principal X doivent
&tre invariantes par f et sont donc nulles, car f agit par multiplication par un
entier positif strictement plus grand que 1 sur chaque espace de cohomologie.
Nous allons employer cette propriété a plusieurs reprises pour montrer que la
fibration de Tits est en fait un produit.

Soit W le fibré vectoriel obtenu en faisant le produit fibré du fibré principal
X par la représentation adjointe de L. Il suffit de montrer que ce fibré vectoriel
est trivial. Par construction, X est un fibré principal obtenu par la suspension
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d’une représentation
(23) p: P—L

ou P est le stabilisateur du point [1: 0 : ... : 0] pour I’action de PGL(m+1, C)
(resp. Sp((m + 1)/2,C)) sur P". Le fibré W est donc un fibré vectoriel
homogene: il est obtenu par suspension de la représentation adyop ou ady
désigne la représentation adjointe de L.

L’endomorphisme f détermine un endomorphisme de W (au-dessus de
f) qui agit par isomorphisme linéaire dans les fibres. L’argument relatif aux
classes caractéristiques du fibré X affirme ainsi que les classes de Chern de
W sont nulles et, en particulier, que sa pente

w
24) (W) = ——r;; (v;)

est nulle. Si V ¢était un sous-faisceau de W de pente u(V) strictement
supérieure a 0, son image réciproque par f” serait de pente d"u(V), ce
qui contredirait ’existence d’une borne supérieure pour les pentes des sous-
faisceaux de W (voir [17], § V.7). Ceci montre que W est un fibré semi-stable
et permet de trouver une décomposition de W en somme directe de sous-

faisceaux
(25) - W= @izl,...,kWi

telle que chaque W; est stable et de pente nulle [24]. I’image réciproque
d’une telle décomposition par f est une nouvelle décomposition de W en
faisceaux stables: par le corollaire 2.8 de [24], chaque f*(Wi) est donc
isomorphe a I'un des W;. Ceci montre que toutes les classes de Chern des
W; sont nulles. Puisque P* est simplement connexe, la nullit¢ des classes de
Chern et la stabilité assurent la trivialité. Les W;, et donc W lui méme, sont
triviaux.

Ceci démontre la proposition lorsque la fibre de Tits est le quotient d’un
groupe de Lie semi-simple par un réseau: la fibration €tant triviale, f admet
un facteur inversible.

Seconde étape. Lorsque L est un groupe de Lie connexe simplement
connexe quelconque, ’argument qui vient d’étre donn€ montre que le fibré
principal associé a sa partie semi-simple est trivial.

Dans la suite exacte (22) nous pouvons donc supposer que 1’image de la
premicre fleche est contenue dans I’intersection de I' avec le radical de L.
On peut donc supposer pendant quelques lignes que L est résoluble.
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Un automorphisme d’un tore agit sur le groupe fondamental Z' en ne
possédant aucune valeur propre entiere strictement plus grande que 1. Plus
généralement, si L est résoluble, il n’existe pas de sous-groupe cyclique infini
A=1{..,a"1,aad,.. .} dans T tel que fu(@) = a’ avec |d] > 1.
L’équivariance de la suite exacte (22) montre alors que I’image de la premiere
fleche est triviale. Comme dans la premicre étape, on peut donc relever la
dynamique au revétement universel de X et supposer que les fibres de la
projection sur P sont isomorphes au groupe de Lie simplement connexe L.

La variété X est obtenue en faisant une suspension a partir d’un morphisme
du groupe parabolique P dans L et la premiere étape permet de supposer que
le morphisme du groupe parabolique P a valeurs dans L est en fait a valeurs
dans le radical résoluble Rad(L) de L.

Supposons pour commencer que P est le stabilisateur de [1 :0: ... : 0]
dans SL(m + 1,C). Un tel morphisme est trivial sur le sous-groupe simple
constitué des matrices de la forme

1 0
(26) (O A) , A €SL(m,C).
Il est donc trivial sur le plus petit sous-groupe distingué contenant cette copie
de SL(m, C) et il est facile d’en déduire que le morphisme factorise a travers
la représentation de P dans C* donnée par

Q27) (‘8‘ Z) — o

Si 'un des poids de la représentation associée est non nul, nous pouvons
construire un fibré en droites f—équivariant de classe de Chern non nulle, ce
qui est impossible. Tous les poids de la représentation sont donc nuls et le
morphisme de P dans L est trivial.

Supposons maintenant que P est le stabilisateur de [1:0:...: 0] dans
le groupe Sp(q,C), avec m+ 1 = 2¢. Dans ce cas, le morphisme de P dans
Rad(L) est trivial sur le sous-groupe de Lie simple

Id 0
28
ou A décrit Sp(g—1, C) et Id est I’élément neutre de SL(2, C). Le morphisme

de P dans Rad(L) est donc trivial sur le plus petit sous-groupe algébrique
distingué qui contient ce groupe. Il transite ainsi par

M a
(29) (0 A>»—>M,
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ou M est une matrice triangulaire supérieure de déterminant 1,

(87 a
(30) M= (o a_1> .

La encore, ’argument sur les classes de Chern permet de conclure que la
représentation est triviale: les matrices M diagonales sont dans le noyau et le
sous-groupe distingué qu’elles engendrent coincide avec le groupe des matrices
triangulaires supérieures.

Nous avons donc montré dans tous les cas que la représentation de P était
triviale, ce qui assure que X est un produit. Le théoréeme est démontré.

EXEMPLE 6.1. Pour les surfaces de Hopf (voir I’exemple 5.1), le
revétement universel coincide avec le fibré tautologique de P' (de fibre C*
et de classe de Chern —1). Cette surface n’a donc aucun endomorphisme
non injectif qui soit de degré 1 dans les fibres. Nous pourrions le montrer
directement en travaillant sur le revétement universel C?\ {0}.

6.4 APPLICATION

Pour démontrer le théoreme 1.1, il suffit maintenant de juxtaposer le
paragraphe 6.2, la proposition 6.2 et le théoreme de Paranjape et Srinivas: si f
est un endomorphisme sans facteur inversible, la base de la fibration de Tits doit
étre un produit d’espaces projectifs et f induit un produit d’endomorphismes
non inversibles, donc la fibre est une nilvariété.

REMARQUE 6.1. Certains endomorphismes de la base IT,P™ ne se relévent
pas en des endomorphismes de X, méme si la fibre de Tits est une nilvariété. Si
I’on suppose que la fibre F est un quotient d’un groupe de Heisenberg H,,, une
condition nécessaire et suffisante est que les endomorphismes f;: P™ — P™
aient tous méme degré pour les indices i tels que la suspension de F au-dessus
de P™ est non triviale. Ce résultat peut €tre obtenu en utilisant les arguments
présentés au cours des exemples 5.2 et 5.3. Nous le laissons en exercice.

7. ENDOMORPHISMES IRREDUCTIBLES

Dans [10], J.-Y. Briend et J. Duval montrent que les endomorphismes
non inversibles de 1’espace projectif possédent tous une unique mesure de
probabilité invariante d’entropie maximale. De plus, cette mesure coincide avec
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