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1 -1 1.1
Thus alwlbIb wy - 1a,l € Im(e), alwlblb’, wy lw=ld';" € Im(a),
_ —1, =1y _
ajwbiby~ lwl wld'; ! ¢ Im(a). Now (alw la’l ) alw a, (a w a’, =
a,w’la’ 7 € Im(), whereas qqw™'d’; ' ¢ Im(e) and qw~la; l'e Im(a). We
thus get a contradiction to the malnormahty of Im() in F,. This completes

the proof. [

13.3 PROOF OF THEOREM 13.2

From Lemmas 13.6 and 13.7, the Cayley complex C(G,) is the mapping-
telescope of a strongly hyperbolic forest-map, equipped with the standard
metric. A Cayley complex is connected. Thus, from Theorem 12.4, C(G,) 18
a Gromov-hyperbolic metric space for any mapping-telescope standard metric.
From Lemma 13.5 the group G, acts cocompactly, properly discontinuously
‘ and isometrically on C(G,) equipped with a mapping-telescope standard
i metric. A classical lemma of geometric group theory (usually attributed to
; Effremovich, Svarc, Milnor — see [19] or [17] for instance), applied to quasi
| geodesic metric spaces, tells us that G, and C(G,) are quasi-isometric SO
that G, is a hyperbolic group. [

| REMARK 13.8. Another way of stating our main theorem about ‘forest-
stacks’, using the language of trees of spaces, goes roughly as follows: “An
| oriented R-tree of R-trees with the gluing-maps satisfying the conditions
| of hyperbolicity and strong hyperbolicity with uniform constants is Gromov-
hyperbolic.” Here ‘oriented R-tree’ means an R-tree 7 equipped with an
orientation going from the domain to the image of each attaching-map, and
a surjective continuous map f: 7 — R respecting this orientation. As a
corollary of our theorem, and in order to illustrate it, we chose to concentrate
on mapping-telescopes. We could as well consider spaces similar to mapping-
telescopes but where we allow the attaching-maps not to be the same at each
q step. Our only requirement is to have uniform constants of quasi-isometry,
| hyperbolicity and so on. Also, with respect to groups, a corollary could have
been stated dealing with HNN-extensions rather than just semi-direct products.

Another result which easily follows from our work could be more or less
stated as follows. “Let T be a tree of spaces X;, i=0,1,....Let ¢: T — T
be a map of T such that the mapping-telescope of each X; under 1 is
| Gromov-hyperbolic. If 1) induces a hyperbolic map on the tree resulting of
| the collapsing of each X; to a point, then the mapping-telescope of the tree
of spaces T under % is Gromov-hyperbolic.” We leave the precise statement
of such corollaries to the reader. Together with [14] where a new proof of the
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Bestvina-Feighn theorem is given for mapping-tori of surface groups, the last
one gives, thanks to [26], a new proof of the full version of the Combination
Theorem for mapping-tori of hyperbolic groups, namely: “If G is a hyperbolic
group and « is a hyperbolic automorphism of G, then G x, Z is a hyperbolic
group.”
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