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60 P. ETINGOF AND E. STRICKLAND
DEFINITION 3.13. The spherical subalgebra of H. is the algebra eH_ e.

Notice that 1 ¢ eH.e. On the other hand, since ex = xe = e for
x € eH.e, e 1is the unit for the spherical subalgebra. We can embed both
C[h*1"¥ and C[h]" in the spherical subalgebra as follows. Take f € C[h*]"
(the other case is identical) and set m.(f) = fe. Since f is invariant, we
have efe = fe* = fe = m,(f), so that m, actually maps C[h*]" to eH_e.
The injectivity is clear from the PBW-theorem. As for the fact that m, is a
homomorphism, we have m.(fg) = fge = fge*> = fege = m,(f)m.(g). From
now on, we will consider both C[h*]" and C[h]" as subalgebras of the
spherical subalgebra.

3.6 CATEGORY O

We are now going to study representations of the algebras H, and eH_ e.

DEFINITION 3.14. The category O(H.) (resp. O(eH.e)) is the full
subcategory of the category of H,.-modules (resp. eH.e-modules) whose
objects are the modules M such that

1) M 1s finitely generated.

2) For all v € M, the subspace C[h*]"v C M is finite dimensional.

We can define a functor
F: OH,) — O(eH_.e)

by setting F(M) = eM. It is easy to show that F(M) is an object of O(eH._e).

We are now going to explain how to construct some modules in O(H,)
which, by analogy with the case of enveloping algebras of semisimple Lie
algebras, we will call Whittaker and Verma modules. First, take A € h*.
Denote by Wy C W the stabilizer of A. Take an irreducible W) -module 7.
We define a structure of C[h*] x C[W)]-module on 7 by

(fw)v = fN)(wv) Yv eT, we Wy, feClh*].

It is easy to see that this action is well defined and we denote this module
by AM#r. We can then consider the H.-module

M\, 7) = He ®cry*1sCiwa] AFT

This is called a Whittaker module. In the special case A = 0 (and
hence W) = W), the module M(0,7) 1s called a Verma module. It is

- clear that these are objects of (0. Notice that as C[h] x C[W]-module,

M\, ) = C[hH] ®c CIW] @ctwy) T-
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EXAMPLE 3.15. If A =0 and 7 = 1 is the trivial representation of W, the
Verma module M(0,1) = C[h]. The action of C[h] is given by multiplication,
that of C[h*] is generated by the Dunkl operators and W acts in the usual way.

3.7 GENERIC c

Opdam and Rouquier have recently studied the structure of the categories
O(H,.), O(eH_.e), and found that it is especially simple if ¢ is “generic” in a
certain sense. Namely, recall that for a W-invariant function g: X — C* one
can define the Hecke algebra He,(W) to be the quotient of the group algebra
of the fundamental group of U/W by the relations (75— 1)(T;+g;) = 0, where
T, is the image in U/W of a small half-circle around the hyperplane of s in
the counterclockwise direction. It is well known that He, (W) is an algebra
of dimension |W/|, which coincides with C[W] if ¢ = 1. It is also known
that He,(W) is semisimple (and isomorphic to C[W] as an algebra) unless g
belongs for some s to a finite set of roots of unity depending on W (see [Hul]).

DEFINITION 3.16. The function c¢ is said to be generic if for g = e*™,
the Hecke algebra He,(W) is semisimple.

In particular, any irrational ¢ is generic, and (more important for us) an
integer valued ¢ is generic (since in this case g = 1). We can now state the
following central result:

THEOREM 3.17 (Opdam-Rouquier [OR]; see also [BEG] for an exposition).
If ¢ is generic (in particular, if c takes non negative integer values), then
the irreducible objects in O are exactly the modules M(\, T). Moreover, the
category O is semisimple.

We also have

THEOREM 3.18 ([OR]). If c is generic then the functor F is an equivalence
of categories.

From Theorem 3.17 we can deduce
THEOREM 3.19 ([BEG]). If c is generic, then H. is a simple algebra.

In the case ¢ =0, we get the simplicity of C[h @ h*] x C[W], which is

~ well known.
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